A consistent method of estimation for the parameters of the three-parameter inverse Gaussian distribution

被引:5
作者
Nagatsuka, Hideki [1 ]
Balakrishnan, N. [2 ]
机构
[1] Tokyo Metropolitan Univ, Fac Syst Design, Hino, Tokyo 1910065, Japan
[2] McMaster Univ, Dept Math & Stat, Hamilton, ON L8S 4K1, Canada
关键词
maximum likelihood method; mixed moments method; conditional method of moments; order statistics; threshold parameter; consistency; MODIFIED MOMENT ESTIMATION; MAXIMUM-LIKELIHOOD; STATISTICAL PROPERTIES;
D O I
10.1080/00949655.2012.674130
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, we propose a consistent method of estimation for the parameters of the three-parameter inverse Gaussian distribution. We then discuss some properties of these estimators and show by means of a Monte Carlo simulation study that the proposed estimators perform better than some other prominent estimators in terms of bias and root mean squared error. Finally, we present two real-life examples to illustrate the method of inference developed here.
引用
收藏
页码:1915 / 1931
页数:17
相关论文
共 50 条
[41]   A New Flexible Three-Parameter Compound Chen Distribution: Properties, Copula and Modeling Relief Times and Minimum Flow Data [J].
Ali, M. Masoom ;
Ibrahim, Mohamed ;
Yousof, Haitham M. .
BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2022, 45 (SUPPL 1) :139-160
[42]   On SNR estimation using IEEE-STD-1057 three-parameter sine wave fit [J].
Negusse, Senay ;
Handel, Peter ;
Zetterberg, Per .
2013 IEEE INTERNATIONAL INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE (I2MTC), 2013, :658-661
[43]   Reliability life analysis of reinforced concrete in a salt corrosion environment based on a three-parameter Weibull distribution [J].
Lu C.-G. ;
Wei Z.-Q. ;
Qiao H.-X. ;
Li K. .
Gongcheng Kexue Xuebao/Chinese Journal of Engineering, 2021, 43 (04) :512-520
[44]   Parameter estimation of inverse Lindley distribution for Type-I censored data [J].
Basu, Suparna ;
Singh, Sanjay Kumar ;
Singh, Umesh .
COMPUTATIONAL STATISTICS, 2017, 32 (01) :367-385
[45]   Least squares and minimum distance estimation in the three-parameter Weibull and Frechet models with applications to river drain data [J].
Offinger, R .
ADVANCES IN STOCHASTIC MODELS FOR RELIABILITY, QUALITY AND SAFETY, 1998, :81-97
[46]   Bayes estimation of ratio of scale-like parameters for inverse Gaussian distributions and applications to classification [J].
Chakraborty, Ankur ;
Jana, Nabakumar .
COMPUTATIONAL STATISTICS, 2025, 40 (05) :2249-2276
[47]   A Three-Parameter Record-Based Transmuted Rayleigh Distribution (Order 3): Theory and Real-Data Applications [J].
Merovci, Faton .
SYMMETRY-BASEL, 2025, 17 (07)
[48]   A New Flexible Three-Parameter Compound Chen Distribution: Properties, Copula and Modeling Relief Times and Minimum Flow Data [J].
M. Masoom Ali ;
Mohamed Ibrahim ;
Haitham M. Yousof .
Bulletin of the Malaysian Mathematical Sciences Society, 2022, 45 :139-160
[49]   Iterative maximum likelihood and zFlogz estimation of parameters of compound-Gaussian clutter with inverse gamma texture [J].
Xu, Shuwen ;
Wang, Le ;
Shui, Penglang ;
Li, Xin ;
Zhang, Jiankang .
2018 IEEE INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING, COMMUNICATIONS AND COMPUTING (ICSPCC), 2018,
[50]   Asymmetric Generalized Gaussian Distribution Parameters Estimation based on Maximum Likelihood, Moments and Entropy [J].
Nacereddine, Nafaa ;
Goumeidane, Aicha Baya .
2019 IEEE 15TH INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTER COMMUNICATION AND PROCESSING (ICCP 2019), 2019, :343-350