A consistent method of estimation for the parameters of the three-parameter inverse Gaussian distribution

被引:5
作者
Nagatsuka, Hideki [1 ]
Balakrishnan, N. [2 ]
机构
[1] Tokyo Metropolitan Univ, Fac Syst Design, Hino, Tokyo 1910065, Japan
[2] McMaster Univ, Dept Math & Stat, Hamilton, ON L8S 4K1, Canada
关键词
maximum likelihood method; mixed moments method; conditional method of moments; order statistics; threshold parameter; consistency; MODIFIED MOMENT ESTIMATION; MAXIMUM-LIKELIHOOD; STATISTICAL PROPERTIES;
D O I
10.1080/00949655.2012.674130
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, we propose a consistent method of estimation for the parameters of the three-parameter inverse Gaussian distribution. We then discuss some properties of these estimators and show by means of a Monte Carlo simulation study that the proposed estimators perform better than some other prominent estimators in terms of bias and root mean squared error. Finally, we present two real-life examples to illustrate the method of inference developed here.
引用
收藏
页码:1915 / 1931
页数:17
相关论文
共 50 条
[21]   Monitoring reliability for a three-parameter Weibull distribution [J].
Sueruecue, Baris ;
Sazak, Hakan S. .
RELIABILITY ENGINEERING & SYSTEM SAFETY, 2009, 94 (02) :503-508
[22]   Parameter Estimation for Doubly Geometric Process with Inverse Gaussian Distribution and its Applications [J].
Inan, Gueltac Eroglu .
FLUCTUATION AND NOISE LETTERS, 2025, 24 (04)
[23]   Three-parameter gamma distribution: Estimation using likelihood, spacings and least squares approach [J].
Lakshmi, R. Vani ;
Vaidyanathan, V. S. .
JOURNAL OF STATISTICS & MANAGEMENT SYSTEMS, 2016, 19 (01) :37-53
[24]   Kernel density estimation of three-parameter Weibull distribution with neural network and genetic algorithm [J].
Yang, Fan ;
Yue, Zhufeng .
APPLIED MATHEMATICS AND COMPUTATION, 2014, 247 :803-814
[25]   Percentile estimators for the three-parameter Weibull distribution for use when all parameters are unknown [J].
Schmid, U .
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1997, 26 (03) :765-785
[26]   A globally convergent and consistent method for estimating the shape parameter of a generalized Gaussian distribution [J].
Song, KS .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (02) :510-527
[27]   New Three-Parameter Exponentiated Benini Distribution: Properties and Applications [J].
Yıldırım, Elif ;
Özel, Gamze ;
Chesneau, Christophe ;
Jamal, Farrukh ;
Gemeay, Ahmed M. .
Iraqi Journal for Computer Science and Mathematics, 2024, 5 (04)
[28]   A comparative evaluation of the estimators of the three-parameter generalized Pareto distribution [J].
Singh, VP ;
Ahmad, M .
JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2004, 74 (02) :91-106
[29]   Consistent Estimator of the Shape Parameter of Three-Dimensional Weibull Distribution [J].
Bartkute-Norkuniene, Vaida ;
Sakalauskas, Leonidas .
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2011, 40 (16) :2985-2996
[30]   On the Novel Three-parameter Nakagami-Rayleigh Distribution and Its Applications [J].
Abdullahi, Ibrahim ;
Simmachan, Teerawat ;
Phaphan, Wikanda .
LOBACHEVSKII JOURNAL OF MATHEMATICS, 2024, 45 (09) :4001-4017