A consistent method of estimation for the parameters of the three-parameter inverse Gaussian distribution

被引:5
作者
Nagatsuka, Hideki [1 ]
Balakrishnan, N. [2 ]
机构
[1] Tokyo Metropolitan Univ, Fac Syst Design, Hino, Tokyo 1910065, Japan
[2] McMaster Univ, Dept Math & Stat, Hamilton, ON L8S 4K1, Canada
关键词
maximum likelihood method; mixed moments method; conditional method of moments; order statistics; threshold parameter; consistency; MODIFIED MOMENT ESTIMATION; MAXIMUM-LIKELIHOOD; STATISTICAL PROPERTIES;
D O I
10.1080/00949655.2012.674130
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, we propose a consistent method of estimation for the parameters of the three-parameter inverse Gaussian distribution. We then discuss some properties of these estimators and show by means of a Monte Carlo simulation study that the proposed estimators perform better than some other prominent estimators in terms of bias and root mean squared error. Finally, we present two real-life examples to illustrate the method of inference developed here.
引用
收藏
页码:1915 / 1931
页数:17
相关论文
共 50 条
[1]   A consistent parameter estimation in the three-parameter lognormal distribution [J].
Nagatsuka, Hideki ;
Balakrishnan, N. .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2012, 142 (07) :2071-2086
[2]   A Consistent Method of Estimation For The Three-Parameter Gamma Distribution [J].
Nagatsuka, Hideki ;
Balakrishnan, N. ;
Kamakura, Toshinari .
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2014, 43 (18) :3905-3926
[3]   A method for estimating parameters and quantiles of the three-parameter inverse Gaussian distribution based on statistics invariant to unknown location [J].
Nagatsuka, Hideki ;
Balakrishnan, N. .
JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2014, 84 (11) :2361-2377
[4]   A consistent method of estimation for the three-parameter Weibull distribution [J].
Nagatsuka, Hideki ;
Kamakura, Toshinari ;
Balakrishnan, N. .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2013, 58 :210-226
[5]   A consistent method of estimation for three-parameter generalized exponential distribution [J].
Prajapat, Kiran ;
Mitra, Sharmishtha ;
Kundu, Debasis .
COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2023, 52 (06) :2471-2487
[6]   Estimation for the three-parameter inverse Gaussian distribution under progressive Type-II censoring [J].
Basak, Prasanta ;
Balakrishnan, N. .
JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2012, 82 (07) :1055-1072
[7]   A consistent method of estimation for the three-parameter lognormal distribution based on Type-II right censored data [J].
Nagatsuka, Hideki ;
Balakrishnan, N. .
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2016, 45 (19) :5693-5708
[8]   Parameter Estimation in a Three-Parameter Lognormal Distribution [J].
Kozlov V.D. ;
Maysuradze A.I. .
Computational Mathematics and Modeling, 2019, 30 (3) :302-310
[9]   Parameter and quantile estimation for the three-parameter gamma distribution based on statistics invariant to unknown location [J].
Nagatsuka, Hideki ;
Balakrishnan, N. .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2012, 142 (07) :2087-2102
[10]   An Efficient Method of Parameter and Quantile Estimation for the Three-Parameter Weibull Distribution Based on Statistics Invariant to Unknown Location Parameter [J].
Nagatsuka, Hideki ;
Balakrishnan, N. .
COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2015, 44 (02) :295-318