Nanoscale Chemical Degradation Mechanisms of Sulfate Attack in Alkali-activated Slag

被引:55
作者
Gong, Kai [1 ,2 ]
White, Claire E. [1 ,2 ]
机构
[1] Princeton Univ, Dept Civil & Environm Engn, Princeton, NJ 08544 USA
[2] Princeton Univ, Andlinger Ctr Energy & Environm, Princeton, NJ 08544 USA
基金
美国国家科学基金会;
关键词
SULFURIC-ACID ATTACK; BLAST-FURNACE SLAG; A-S-H; ACCELERATED CARBONATION; GEOPOLYMER CEMENTS; HARDENED PASTE; PART; SILICATE; EVOLUTION; MAGNESIUM;
D O I
10.1021/acs.jpcc.7b11270
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Chemically induced material degradation is a major durability issue facing many technologically important materials systems, including conventional and new sustainable cementitious materials. In this study, the nanoscale chemical degradation mechanisms have been elucidated for an amorphous sodium hydroxide-activated slag paste (one type of sustainable cement) exposed to different types of sulfate-bearing solutions (i.e., Na2SO4, MgSO4, and H2SO4), by combining synchrotron-based X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy and X-ray pair distribution function (PDF) analysis. The XRD, FTIR, and PDF results show that the chemistry and structure of the paste is essentially immune to Na2SO4 attack, whereas exposure to 5-10 wt % MgSO4 and H2SO4 cause complete disintegration of the main binder gel (i.e., sodium-containing calcium-(alumino)-silicate-hydrate), along with formation of magnesium-silicate-hydrate or silica-rich gels and extensive precipitation of gypsum. These differences appear to be directly correlated with the ability of the ions (i.e., Na+, Mg2+, H+) accompanying SO42- to alter the pH of the pore solution in the samples. By correlating the changes that occurred to the phase composition and the structure of the paste with the pH data from the equilibrated solutions, this study has provided important mechanistic insight on the fundamental sulfate-induced degradation reactions occurring in hydroxide-activated slag.
引用
收藏
页码:5992 / 6004
页数:13
相关论文
共 77 条
[1]  
Abora K., 2014, Alkali activated materials: State-of-the-art report, P177
[2]  
Al-Amoudi OSB, 2002, CEMENT CONCRETE COMP, V24, P305
[3]   Synthesis and characterization by FTIR spectroscopy of silica aerogels prepared using several Si(OR)4 and R"Si(OR′)3 precursors [J].
Al-Oweini, Rami ;
El-Rassy, Houssam .
JOURNAL OF MOLECULAR STRUCTURE, 2009, 919 (1-3) :140-145
[4]   Durability test methods and their application to AAMs: case of sulfuric-acid resistance [J].
Aliques-Granero, J. ;
Tognonvi, T. M. ;
Tagnit-Hamou, A. .
MATERIALS AND STRUCTURES, 2017, 50 (01)
[5]  
Allahverdi A, 2006, CERAM-SILIKATY, V50, P1
[6]  
Allahverdi A, 2005, CERAM-SILIKATY, V49, P225
[7]   Produce and use with care [J].
不详 .
NATURE MATERIALS, 2017, 16 (07) :698-698
[8]   Sulfate attack on alkali-activated slag concrete [J].
Bakharev, T ;
Sanjayan, JG ;
Cheng, YB .
CEMENT AND CONCRETE RESEARCH, 2002, 32 (02) :211-216
[9]  
Bascarevic Z., 2015, Handbook of alkali-activated cements, mortars and concretes, P373
[10]   Atomic structure of a cesium aluminosilicate geopolymer: A pair distribution function study [J].
Bell, Jonathan L. ;
Sarin, Pankaj ;
Provis, John L. ;
Haggerty, Ryan P. ;
Driemeyer, Patrick E. ;
Chupas, Peter J. ;
van Deventer, Jannie S. J. ;
Kriven, Waltraud M. .
CHEMISTRY OF MATERIALS, 2008, 20 (14) :4768-4776