Jump conditions for shock waves on the surface of a star

被引:6
作者
Baty, Roy S. [1 ]
Tucker, Don H. [2 ]
机构
[1] Los Alamos Natl Lab, Los Alamos, NM 87545 USA
[2] Univ Utah, Salt Lake City, UT 84112 USA
关键词
Shock waves on a star surface; Magnetogasdynamics; Shock wave jump conditions; Nonstandard analysis; SPHERICAL MAGNETOGASDYNAMIC SHOCK; RADIATION;
D O I
10.1007/s10509-008-9949-6
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
This article applies nonstandard analysis to derive jump conditions for one-dimensional, diverging, magnetogasdynamic shock waves emerging on the surface of a star. It is assumed that the shock thickness occurs on an infinitesimal interval and the jump functions for the flow parameters occur smoothly across this interval. Predistributions of the Heaviside function and the Dirac delta measure are used to model the flow variables across a shock wave. The equations of motion expressed in nonconservative form are then applied to derive unambiguous relationships between the jump functions for the flow parameters. It is shown here that the equations modeling a family of magnetogasdynamic shock waves yield products of generalized functions that may be analyzed consistently using nonstandard predistributions.
引用
收藏
页码:23 / 30
页数:8
相关论文
共 15 条
[1]  
ARKERYD LO, 1997, NONSTANDARD ANAL THE
[2]   Nonstandard analysis and jump conditions for converging shock waves [J].
Baty, Roy S. ;
Farassat, F. ;
Tucker, Don H. .
JOURNAL OF MATHEMATICAL PHYSICS, 2008, 49 (06)
[3]   CYLINDRICAL SHOCK AND DETONATION WAVES IN MAGNETOGASDYNAMICS [J].
CHRISTER, AH ;
HELLIWEL.JB .
JOURNAL OF FLUID MECHANICS, 1969, 39 :705-&
[4]  
Hughes W, 1966, The electromagnetics of fluids
[5]  
LAUGWITZ D, 1984, MATH STAT STRUCTURES, V2, P233
[6]  
LEVEQUE R. J., 1992, Numerical Methods for Conservation Laws, Birkha
[7]   MOLECULAR VELOCITY DISTRIBUTION FUNCTION MEASUREMENTS IN A NORMAL SHOCK WAVE [J].
MUNTZ, EP ;
HARNETT, LN .
PHYSICS OF FLUIDS, 1969, 12 (10) :2027-&
[8]   EQUATORIAL PROPAGATION OF AXISYMMETRIC MAGNETOHYDRODYNAMIC SHOCKS [J].
ROSENAU, P ;
FRANKENTHAL, S .
PHYSICS OF FLUIDS, 1976, 19 (12) :1889-1899
[9]  
Smoller J., 2012, Shock waves and reaction-diffusion equations, V258
[10]   THE EMERGENCE OF A SPHERICAL MAGNETOGASDYNAMIC SHOCK-WAVE AT THE SURFACE OF A STAR [J].
SRIVASTAVA, RC .
ASTROPHYSICS AND SPACE SCIENCE, 1983, 92 (02) :359-364