Syntax theory of finite lattice-valued propositional logic

被引:2
|
作者
Pan XiaoDong
Meng Dan
Xu Yang
机构
[1] School of Mathematics, Southwest Jiaotong University, Sichuan
[2] Intelligent Control Development Center, Southwest Jiaotong University, Sichuan
[3] School of Economics Information Engineering, Southwestern University of Finance and Ecnomics, Sichuan
基金
中国国家自然科学基金;
关键词
Lattice-valued propositional logic; syntax theory; inference rule; generalized deduction theorem; completeness; FUZZY-LOGIC;
D O I
10.1007/s11432-012-4580-0
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we establish the graded syntax theory of lattice-valued propositional logic based on finite lattice implication algebras, define the notions of syntactic consequence operation and formal proof, and develop a kind of graded finite lattice-valued propositional calculus. By generalizing classic provable equivalence relation, we present a kind of generalized provable equivalence relation, and establish the corresponding quotient algebra. Finally, we establish the generalized deduction theorem by syntactic consequence operation, and establish the completeness in Pavelka's sense based on finite chains.
引用
收藏
页码:1 / 12
页数:12
相关论文
共 50 条
  • [1] Syntax theory of finite lattice-valued propositional logic
    XiaoDong Pan
    Dan Meng
    Yang Xu
    Science China Information Sciences, 2013, 56 : 1 - 12
  • [2] Syntax theory of finite lattice-valued propositional logic
    PAN XiaoDong
    MENG Dan
    XU Yang
    ScienceChina(InformationSciences), 2013, 56 (08) : 177 - 188
  • [3] Semantic theory of finite lattice-valued propositional logic
    Pan XiaoDong
    Xu Yang
    SCIENCE CHINA-INFORMATION SCIENCES, 2010, 53 (10) : 2022 - 2031
  • [4] Semantic theory of finite lattice-valued propositional logic
    PAN XiaoDong 1
    2 Intelligent Control Development Center
    Science China(Information Sciences), 2010, 53 (10) : 2022 - 2031
  • [5] Semantic theory of finite lattice-valued propositional logic
    XiaoDong Pan
    Yang Xu
    Science China Information Sciences, 2010, 53 : 2022 - 2031
  • [6] On Compactness and Consistency in Finite Lattice-Valued Propositional Logic
    Pan, Xiaodong
    Xu, Yang
    Martinez, Luis
    Ruan, Da
    Liu, Jun
    HYBRID ARTIFICIAL INTELLIGENCE SYSTEMS, PT 2, 2010, 6077 : 328 - +
  • [7] A comparison between lattice-valued propositional logic LP(X) and gradational lattice-valued propositional logic Lvpl
    Chang, Zhiyan
    Xu, Yang
    Lai, Jiajun
    Long, Xiqing
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS AND KNOWLEDGE ENGINEERING (ISKE 2007), 2007,
  • [8] L-TAUTOLOGY THEORY IN LATTICE-VALUED PROPOSITIONAL LOGIC
    Pan, Xiaodong
    Xu, Kaijun
    Qin, Keyun
    Xu, Yang
    COMPUTATIONAL INTELLIGENCE: FOUNDATIONS AND APPLICATIONS: PROCEEDINGS OF THE 9TH INTERNATIONAL FLINS CONFERENCE, 2010, 4 : 105 - +
  • [9] α-Lock paramodulation for lattice-valued propositional logic
    He, Xingxing
    Xu, Yang
    Liu, J.
    2015 10TH INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS AND KNOWLEDGE ENGINEERING (ISKE), 2015, : 18 - 20
  • [10] Lattice-valued modal propositional logic and its completeness
    SHI HuiXian & WANG GuoJun1 Institute of Mathematics
    Science China(Information Sciences), 2010, 53 (11) : 2230 - 2239