A unifying framework for ghost-free Lorentz-invariant Lagrangian field theories

被引:3
作者
Li, Wenliang [1 ]
机构
[1] Univ Paris 07, Sorbonne Paris Cite, CNRS, APC,UMR 7164,IN2P3,CEA,IRFU,Obs Paris, Batiment Condorcet, F-75205 Paris 13, France
关键词
EQUATIONS; TENSOR;
D O I
10.1016/j.physletb.2017.06.073
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We propose a framework for Lorentz-invariant Lagrangian field theories where Ostrogradsky's scalar ghosts could be absent. A key ingredient is the generalized Kronecker delta. The general Lagrangians are reformulated in the language of differential forms. The absence of higher order equations of motion for the scalar modes stems from the basic fact that every exact form is closed. The well-established Lagrangian theories for spin-0, spin-1, p-form, spin-2 fields have natural formulations in this framework. We also propose novel building blocks for Lagrangian field theories. Some of them are novel nonlinear derivative terms for spin-2 fields. It is nontrivial that Ostrogradsky's scalar ghosts are absent in these fully nonlinear theories. (C) 2018 The Author(s). Published by Elsevier B.V.
引用
收藏
页码:485 / 491
页数:7
相关论文
共 35 条
[1]  
[Anonymous], 2016, PHYS REV
[2]  
[Anonymous], 1850, Mem. Acad. St. Petersbourg
[3]   Massive Gravity in Three Dimensions [J].
Bergshoeff, Eric A. ;
Hohm, Olaf ;
Townsend, Paul K. .
PHYSICAL REVIEW LETTERS, 2009, 102 (20)
[4]   Higher-spin charges in Hamiltonian form. I. Bose fields [J].
Campoleoni, A. ;
Henneaux, M. ;
Hortner, S. ;
Leonard, A. .
JOURNAL OF HIGH ENERGY PHYSICS, 2016, (10)
[5]   New kinetic terms for massive gravity and multi-gravity: a no-go in vielbein form [J].
de Rham, Claudia ;
Matas, Andrew ;
Tolley, Andrew J. .
CLASSICAL AND QUANTUM GRAVITY, 2015, 32 (21)
[6]   New kinetic interactions for massive gravity? [J].
de Rham, Claudia ;
Matas, Andrew ;
Tolley, Andrew J. .
CLASSICAL AND QUANTUM GRAVITY, 2014, 31 (16)
[7]   Resummation of Massive Gravity [J].
de Rham, Claudia ;
Gabadadze, Gregory ;
Tolley, Andrew J. .
PHYSICAL REVIEW LETTERS, 2011, 106 (23)
[8]   From k-essence to generalized Galileons [J].
Deffayet, C. ;
Gao, Xian ;
Steer, D. A. ;
Zahariade, G. .
PHYSICAL REVIEW D, 2011, 84 (06)
[9]   Arbitrary p-form Galileons [J].
Deffayet, C. ;
Deser, S. ;
Esposito-Farese, G. .
PHYSICAL REVIEW D, 2010, 82 (06)
[10]   Generalized Galileons: All scalar models whose curved background extensions maintain second-order field equations and stress tensors [J].
Deffayet, C. ;
Deser, S. ;
Esposito-Farese, G. .
PHYSICAL REVIEW D, 2009, 80 (06)