Roles of p53, Myc and HIF-1 in Regulating Glycolysis - the Seventh Hallmark of Cancer

被引:402
作者
Yeung, S. J. [1 ,2 ]
Pan, J. [3 ]
Lee, M. -H.
机构
[1] Univ Texas MD Anderson Canc Ctr, Dept Gen Internal Med Ambulatory Treatment & Emer, Houston, TX 77030 USA
[2] Univ Texas MD Anderson Canc Ctr, Dept Endocrine Neoplasia & Hormonal Disorders, Houston, TX 77030 USA
[3] Sun Yat Sen Univ, Sch Med, Dept Pathophysiol, Guangzhou 510275, Guangdong, Peoples R China
关键词
Oncogenes; tumor suppressors; signaling pathways; mTOR; MYC; p53; HIF-1; glycolysis; Warburg phenomenon;
D O I
10.1007/s00018-008-8224-x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Despite diversity in genetic events in oncogenesis, cancer cells exhibit a common set of functional characteristics. Otto Warburg discovered that cancer cells have consistently higher rates of glycolysis than normal cells. The underlying mechanisms leading to the Warburg phenomenon include mitochondrial changes, upregulation of rate-limiting enzymes/proteins in glycolysis and intracellular pH regulation, hypoxia-induced switch to anaerobic metabolism, and metabolic reprogramming after loss of p53 function. The regulation of energy metabolism can be traced to a "triad" of transcription factors: c-MYC, HIF-1 and p53. Oncogenetic changes involve a nonrandom set of gene deletions, amplifications and mutations, and many oncogenes and tumor suppressor genes cluster along the signaling pathways that regulate c-MYC, HIF-1 and p53. Glycolysis in cancer cells has clinical implications in cancer diagnosis, treatment and interaction with diabetes mellitus. Many drugs targeting energy metabolism are in development. Future advances in technology may bring about transcriptome and metabolome-guided chemotherapy.
引用
收藏
页码:3981 / 3999
页数:19
相关论文
共 161 条
  • [1] A role for hypoxia and hypoxia-inducible transcription factors in tumor physiology
    Acker, T
    Plate, KH
    [J]. JOURNAL OF MOLECULAR MEDICINE-JMM, 2002, 80 (09): : 562 - 575
  • [2] MTOR signalling in human cancer
    Albanell, J.
    Dalmases, A.
    Rovira, A.
    Rojo, F.
    [J]. CLINICAL & TRANSLATIONAL ONCOLOGY, 2007, 9 (08) : 484 - 493
  • [3] Genes of glycolysis are ubiquitously overexpressed in 24 cancer classes
    Altenberg, B
    Greulich, KO
    [J]. GENOMICS, 2004, 84 (06) : 1014 - 1020
  • [4] Stabilization of wild-type p53 by hypoxia-inducible factor 1α
    An, WG
    Kanekal, M
    Simon, MC
    Maltepe, E
    Blagosklonny, MV
    Neckers, LM
    [J]. NATURE, 1998, 392 (6674) : 405 - 408
  • [5] Paradoxes in carcinogenesis: New opportunities for research directions
    Baker, Stuart G.
    Kramer, Barnett S.
    [J]. BMC CANCER, 2007, 7 (1)
  • [6] Regulation of GLUT1 gene transcription by the serine threonine kinase Akt1
    Barthel, A
    Okino, ST
    Liao, JF
    Nakatani, K
    Li, JP
    Whitlock, JP
    Roth, RA
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (29) : 20281 - 20286
  • [7] ATP citrate lyase is an important component of cell growth and transformation
    Bauer, DE
    Hatzivassiliou, G
    Zhao, FP
    Andreadis, C
    Thompson, CB
    [J]. ONCOGENE, 2005, 24 (41) : 6314 - 6322
  • [8] BENHORIN H, 1995, CANCER RES, V55, P2814
  • [9] TIGAR, a p53-inducible regulator of glycolysis and apoptosis
    Bensaad, Karim
    Tsuruta, Atsushi
    Selak, Mary A.
    Calvo Vidal, M. Nieves
    Nakano, Katsunori
    Bartrons, Ramon
    Gottlieb, Eyal
    Vousden, Karen H.
    [J]. CELL, 2006, 126 (01) : 107 - 120
  • [10] DBEST - DATABASE FOR EXPRESSED SEQUENCE TAGS
    BOGUSKI, MS
    LOWE, TMJ
    TOLSTOSHEV, CM
    [J]. NATURE GENETICS, 1993, 4 (04) : 332 - 333