Candida tropicalis Antifungal Cross-Resistance Is Related to Different Azole Target (Erg11p) Modifications

被引:97
作者
Forastiero, A. [1 ]
Mesa-Arango, A. C. [1 ,2 ]
Alastruey-Izquierdo, A. [1 ]
Alcazar-Fuoli, L. [1 ]
Bernal-Martinez, L. [1 ]
Pelaez, T. [3 ,4 ]
Lopez, J. F. [5 ]
Grimalt, J. O. [5 ]
Gomez-Lopez, A. [1 ]
Cuesta, I. [6 ]
Zaragoza, O. [1 ]
Mellado, E. [1 ]
机构
[1] Inst Salud Carlos III, Mycol Reference Lab, Ctr Nacl Microbiol, Madrid, Spain
[2] Univ Antioquia, Grp Investigat Dermatol, Medellin, Colombia
[3] Univ Gregorio Maranon, Gen Hosp, Microbiol & Infect Dis Dept, Madrid, Spain
[4] Univ Complutense, Fac Med, Dept Med, E-28040 Madrid, Spain
[5] CSIC, Dept Quim Ambiental, Inst Environm Assessment & Water Res IDAEA, Barcelona, Spain
[6] Inst Salud Carlos III, Bioinformat Unit, Ctr Nacl Microbiol, Madrid, Spain
关键词
AMINO-ACID SUBSTITUTIONS; EUCAST TECHNICAL NOTE; FLUCONAZOLE RESISTANCE; GALLERIA-MELLONELLA; AMPHOTERICIN-B; ASPERGILLUS-FUMIGATUS; MOLECULAR-MECHANISMS; SPECIES DISTRIBUTION; ALBICANS STRAINS; CLINICAL ISOLATE;
D O I
10.1128/AAC.00477-13
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Candida tropicalis ranks between third and fourth among Candida species most commonly isolated from clinical specimens. Invasive candidiasis and candidemia are treated with amphotericin B or echinocandins as first-line therapy, with extended-spectrum triazoles as acceptable alternatives. Candida tropicalis is usually susceptible to all antifungal agents, although several azole drug-resistant clinical isolates are being reported. However, C. tropicalis resistant to amphotericin B is uncommon, and only a few strains have reliably demonstrated a high level of resistance to this agent. The resistance mechanisms operating in C. tropicalis strains isolated from clinical samples showing resistance to azole drugs alone or with amphotericin B cross-resistance were elucidated. Antifungal drug resistance was related to mutations of the azole target (Erg11p) with or without alterations of the ergosterol biosynthesis pathway. The antifungal drug resistance shown in vitro correlated very well with the results obtained in vivo using the model host Galleria mellonella. Using this panel of strains, the G. mellonella model system was validated as a simple, nonmammalian minihost model that can be used to study in vitro-in vivo correlation of antifungals in C. tropicalis. The development in C. tropicalis of antifungal drug resistance with different mechanisms during antifungal treatment has potential clinical impact and deserves specific prospective studies.
引用
收藏
页码:4769 / 4781
页数:13
相关论文
共 73 条
  • [1] Species distribution and anti-fungal susceptibility of Candidaemia at a multi super-specialty center in southern India
    Adhikary, R.
    Joshi, S.
    [J]. INDIAN JOURNAL OF MEDICAL MICROBIOLOGY, 2011, 29 (03) : 309 - 311
  • [2] Ergosterol biosynthesis pathway in Aspergillus fumigatus
    Alcazar-Fuoli, Laura
    Mellado, Emilia
    Garcia-Effron, Guillermo
    Lopez, Jordi R.
    Grimalt, Joan O.
    Cuenca-Estrella, J. Manuel
    Rodriguez-Tudela, Juan L.
    [J]. STEROIDS, 2008, 73 (03) : 339 - 347
  • [3] EUCAST technical note on anidulafungin
    Arendrup, M. C.
    Rodriguez-Tudela, J-L
    Lass-Floerl, C.
    Cuenca-Estrella, M.
    Donnelly, J. P.
    Hope, W.
    [J]. CLINICAL MICROBIOLOGY AND INFECTION, 2011, 17 (11) : E18 - E20
  • [4] EUCAST technical note on the EUCAST definitive document EDef 7.2: method for the determination of broth dilution minimum inhibitory concentrations of antifungal agents for yeasts EDef 7.2 (EUCAST-AFST)
    Arendrup, Maiken C.
    Cuenca-Estrella, Manuel
    Lass-Floerl, Cornelia
    Hope, William
    [J]. CLINICAL MICROBIOLOGY AND INFECTION, 2012, 18 (07) : E246 - E247
  • [5] The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling
    Arnold, K
    Bordoli, L
    Kopp, J
    Schwede, T
    [J]. BIOINFORMATICS, 2006, 22 (02) : 195 - 201
  • [6] Comparison of visual and spectrophotometric methods of broth microdilution MIC end point determination and evaluation of a sterol quantitation method for in vitro susceptibility testing of fluconazole and itraconazole against trailing and nontrailing Candida isolates
    Arthington-Skaggs, BA
    Lee-Yang, W
    Ciblak, MA
    Frade, JP
    Brandt, ME
    Hajjeh, RA
    Harrison, LH
    Sofair, AN
    Warnock, DW
    [J]. ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 2002, 46 (08) : 2477 - 2481
  • [7] Experimental induction of fluconazole resistance in Candida tropicalis ATCC 750
    Barchiesi, F
    Calabrese, D
    Sanglard, D
    Di Francesco, LF
    Caselli, F
    Giannini, D
    Giacometti, A
    Gavaudan, S
    Scalise, G
    [J]. ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 2000, 44 (06) : 1578 - 1584
  • [8] Fungal cytochrome P450 sterol 14α-demethylase (CYP51) and azole resistance in plant and human pathogens
    Becher, Rayko
    Wirsel, Stefan G. R.
    [J]. APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2012, 95 (04) : 825 - 840
  • [9] Analysis of the CYP51 gene and encoded protein in propiconazole-resistant isolates of Mycosphaerella fijiensis
    Canas-Gutierrez, Gloria P.
    Angarita-Velasquez, Monica J.
    Restrepo-Florez, Juan M.
    Rodriguez, Paola
    Moreno, Claudia X.
    Arango, Rafael
    [J]. PEST MANAGEMENT SCIENCE, 2009, 65 (08) : 892 - 899
  • [10] Patterns of amphotericin B killing kinetics against seven Candida species
    Cantón, E
    Pemán, J
    Gobernado, M
    Viudes, A
    Espinel-Ingroff, A
    [J]. ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 2004, 48 (07) : 2477 - 2482