Lp-improving Convolution Operators on Finite Quantum Groups

被引:11
作者
Wang, Simeng [1 ,2 ]
机构
[1] Univ Bourgogne Franche Comte, Math Lab, F-25030 Besancon, France
[2] Polish Acad Sci, Inst Math, Ul Sniadeckich 8, PL-00956 Warsaw, Poland
关键词
L-p-improving operators; compact quantum groups; positive convolution operators; FOURIER-TRANSFORM; INEQUALITY; THEOREM;
D O I
10.1512/iumj.2016.65.5881
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We characterize positive convolution operators on a finite quantum group G that are L-p-improving. More precisely, we prove that the convolution operator T-phi : x -> phi * x given by a state phi on C (G) satisfies there exists 1 < p < 2, vertical bar vertical bar T-phi : L-p (G) -> L-2 (G) vertical bar vertical bar = 1 if and only if the Fourier series phi satisfies vertical bar vertical bar phi (alpha) vertical bar vertical bar < 1 for all nontrivial irreducible unitary representations a, and if and only if the state (phi o S) * phi is non-degenerate (where S is the antipode). We also prove that these Lp-improving properties are stable under taking free products, which gives a method to construct Lp-improving multipliers on infinite compact quantum groups. Our methods for non-degenerate states yield a general formula for computing idempotent states associated with Hopf images, a formula that generalizes earlier work of Banica, Franz, and Skalski.
引用
收藏
页码:1609 / 1637
页数:29
相关论文
共 25 条
[1]  
[Anonymous], 1998, Nieuw Arch. Wisk
[2]  
Banica Teodor, 2012, Bulletin of the Polish Academy of Sciences, Technical Sciences, V60, P123, DOI 10.4064/ba60-2-3
[3]   HOPF IMAGES AND INNER FAITHFUL REPRESENTATIONS [J].
Banica, Teodor ;
Bichon, Julien .
GLASGOW MATHEMATICAL JOURNAL, 2010, 52 :677-703
[4]  
Bozejko M, 1996, PAC J MATH, V175, P357
[5]   THE LP-FOURIER TRANSFORM ON LOCALLY COMPACT QUANTUM GROUPS [J].
Caspers, Martijn .
JOURNAL OF OPERATOR THEORY, 2013, 69 (01) :161-193
[6]   A HAUSDORFF-YOUNG INEQUALITY FOR LOCALLY COMPACT QUANTUM GROUPS [J].
Cooney, Tom .
INTERNATIONAL JOURNAL OF MATHEMATICS, 2010, 21 (12) :1619-1632
[7]   COMPLETELY POSITIVE MULTIPLIERS OF QUANTUM GROUPS [J].
Daws, Matthew .
INTERNATIONAL JOURNAL OF MATHEMATICS, 2012, 23 (12)
[8]  
Folland G.B., 1995, Studies in Advanced Mathematics
[9]  
Hewitt E., 1970, Grundlehren der Math. Wissenschaften, V152, DOI [10.1007/978-3-642-62008-9, DOI 10.1007/978-3-642-62008-9]
[10]   A REPRESENTATION THEOREM FOR LOCALLY COMPACT QUANTUM GROUPS [J].
Junge, Marius ;
Neufang, Matthias ;
Ruan, Zhong-Jin .
INTERNATIONAL JOURNAL OF MATHEMATICS, 2009, 20 (03) :377-400