ON THE CONVERGENCE OF FINITE ELEMENT METHODS FOR HAMILTON-JACOBI-BELLMAN EQUATIONS

被引:52
作者
Jensen, Max [1 ]
Smears, Iain [2 ]
机构
[1] Univ Durham, Dept Math Sci, Durham DH1 3LE, England
[2] Univ Oxford, Inst Math, Oxford OX1 3LB, England
关键词
finite element methods; partial differential equations; Hamilton-Jacobi-Bellman equations; viscosity solutions; DISCRETE MAXIMUM PRINCIPLE; DIFFERENCE APPROXIMATIONS; PARABOLIC EQUATIONS; VISCOSITY SOLUTIONS; DIFFUSION; SCHEMES;
D O I
10.1137/110856198
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the convergence of monotone P1 finite element methods on unstructured meshes for fully nonlinear Hamilton-Jacobi-Bellman equations arising from stochastic optimal control problems with possibly degenerate, isotropic diffusions. Using elliptic projection operators we treat discretizations which violate the consistency conditions of the framework by Barles and Souganidis. We obtain strong uniform convergence of the numerical solutions and, under nondegeneracy assumptions, strong L-2 convergence of the gradients.
引用
收藏
页码:137 / 162
页数:26
相关论文
共 38 条
[1]  
[Anonymous], 2006, SPRINGER SER COMPUT
[2]  
Barles G., 1991, Asymptotic Analysis, V4, P271
[3]   EXIT TIME PROBLEMS IN OPTIMAL-CONTROL AND VANISHING VISCOSITY METHOD [J].
BARLES, G ;
PERTHAME, B .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1988, 26 (05) :1133-1148
[4]   Error bounds for monotone approximation schemes for parabolic Hamilton-Jacobi-Bellman equations [J].
Barles, Guy ;
Jakobsen, Espen R. .
MATHEMATICS OF COMPUTATION, 2007, 76 (260) :1861-1893
[5]   SOME CONVERGENCE RESULTS FOR HOWARD'S ALGORITHM [J].
Bokanowski, Olivier ;
Maroso, Stefania ;
Zidani, Hasnaa .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2009, 47 (04) :3001-3026
[6]   C0 PENALTY METHODS FOR THE FULLY NONLINEAR MONGE-AMPERE EQUATION [J].
Brenner, Susanne C. ;
Gudi, Thirupathi ;
Neilan, Michael ;
Sung, Li-Yeng .
MATHEMATICS OF COMPUTATION, 2011, 80 (276) :1979-1995
[7]   Stabilized Galerkin approximation of convection-diffusion-reaction equations: Discrete maximum principle and convergence [J].
Burman, E ;
Ern, A .
MATHEMATICS OF COMPUTATION, 2005, 74 (252) :1637-1652
[8]   Nonlinear diffusion and discrete maximum principle for stabilized Galerkin approximations of the convection-diffusion-reaction equation [J].
Burman, E ;
Ern, A .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2002, 191 (35) :3833-3855
[9]   AN APPROXIMATION SCHEME FOR THE OPTIMAL-CONTROL OF DIFFUSION-PROCESSES [J].
CAMILLI, F ;
FALCONE, M .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1995, 29 (01) :97-122
[10]   A FINITE ELEMENT LIKE SCHEME FOR INTEGRO-PARTIAL DIFFERENTIAL HAMILTON-JACOBI-BELLMAN EQUATIONS [J].
Camilli, Fabio ;
Jakobsen, Espen R. .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2009, 47 (04) :2407-2431