High order data sharpening for density estimation

被引:18
作者
Hall, P
Minnotte, MC
机构
[1] Australian Natl Univ, Ctr Math & Applicat, Canberra, ACT 0200, Australia
[2] Utah State Univ, Logan, UT 84322 USA
关键词
bandwidth; bias reduction; kernel methods; local polynomial methods; mean-squared error; nonparametric curve estimation; transformation methods; wiggliness;
D O I
10.1111/1467-9868.00329
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
It is shown that data sharpening can be used to produce density estimators that enjoy arbitrarily high orders of bias reduction. Practical advantages of this approach, relative to competing methods, are demonstrated. They include the sheer simplicity of the estimators, which makes code for computing them particularly easy to write, very good mean-squared error performance, reduced 'wiggliness' of estimates and greater robustness against undersmoothing.
引用
收藏
页码:141 / 157
页数:17
相关论文
共 19 条
[2]  
ABRAMSON IS, 1982, ANN STAT, V9, P168
[3]   OBSERVATIONS ON FE-DI-MG RELATIONSHIP IN CHONDRITES [J].
AHRENS, LH .
GEOCHIMICA ET COSMOCHIMICA ACTA, 1965, 29 (07) :801-&
[4]   On bias reduction in local linear smoothing [J].
Choi, E ;
Hall, P .
BIOMETRIKA, 1998, 85 (02) :333-345
[5]   Data sharpening as a prelude to density estimation [J].
Choi, E ;
Hall, P .
BIOMETRIKA, 1999, 86 (04) :941-947
[6]  
COPAS JB, 1995, J ROY STAT SOC B, V57, P221
[7]  
GLAD IK, 1999, 171999 U OSL DEP MAT
[8]  
Hjort NL, 1996, ANN STAT, V24, P1619
[9]  
Hossjer O, 1996, PROBAB THEORY REL, V105, P159
[10]  
HOSSJER O, 1996, ANN STAT, V23, P1198