Effects of wind veer on a yawed wind turbine wake in atmospheric boundary layer flow

被引:13
|
作者
Narasimhan, Ghanesh [1 ]
Gayme, Dennice F. [1 ]
Meneveau, Charles [1 ]
机构
[1] Johns Hopkins Univ, Dept Mech Engn, Baltimore, MD 21218 USA
基金
美国国家科学基金会;
关键词
LARGE-EDDY SIMULATIONS; MODEL; STRESS; BLADES;
D O I
10.1103/PhysRevFluids.7.114609
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Large eddy simulations (LESs) are used to study the effects of veer (the height-dependent lateral deflection of wind velocity due to Coriolis acceleration) on the evolution of wind turbine wakes in the atmospheric boundary layer. Specifically, this work focuses on turbines that are yawed with respect to the mean incoming wind velocity, which produces laterally deflected wakes that have a curled (crescent-shaped) structure. These effects can be attributed to the introduction of streamwise mean vorticity and the formation of a counter-rotating vortex pair (CVP) on the top and bottom of the wake. In a truly neutral boundary layer (TNBL) in which wind veer effects are absent, these effects can be captured well with existing analytical wake models [Bastankhah et al., J. Fluid Mech. 933, A2 (2022)]. However, in the more realistic case of atmospheric boundary layers subjected to Coriolis acceleration, existing models need to be reexamined and generalized to include the effects of wind veer. To this end, the flow in a conventionally neutral atmospheric boundary layer (CNBL) interacting with a yawed wind turbine is investigated in this paper. Results indicate that in the presence of veer the CVP's top and bottom vortices exhibit considerable asymmetry. However, upon removing the veer component of vorticity, the resulting distribution is much more symmetric and agrees well with that observed in a TNBL. These results are used to develop a simple correction to predict the mean velocity distribution in the wake of a yawing turbine in a CNBL using analytical models. The correction includes the veer-induced sideways wake deformation, as proposed by Abkar et al. [Energies 11, 1838 (2018)]. The resulting model predictions are compared with mean velocity distributions from the LESs, and good agreement is obtained.
引用
收藏
页数:24
相关论文
共 50 条
  • [11] Wake impact on aerodynamic characteristics of horizontal axis wind turbine under yawed flow conditions
    Lee, Hakjin
    Lee, Duck-Joo
    RENEWABLE ENERGY, 2019, 136 : 383 - 392
  • [12] Influence of wake asymmetry on wind turbine blade aerodynamic and aeroelastic performance in shear/yawed wind
    Chen, Jinge
    Shen, Xin
    Zhu, Xiaocheng
    Du, Zhaohui
    JOURNAL OF RENEWABLE AND SUSTAINABLE ENERGY, 2018, 10 (05)
  • [13] Direct integration of non-axisymmetric Gaussian wind-turbine wake including yaw and wind-veer effects
    Ali, Karim
    Ouro, Pablo
    Stallard, Tim
    WIND ENERGY SCIENCE, 2025, 10 (03) : 511 - 533
  • [14] Dynamic Responses and Wake Characteristics of a Floating Offshore Wind Turbine in Yawed Conditions
    Xu, Shun
    Zhao, Weiwen
    Wan, Decheng
    Zhao, Yan
    INTERNATIONAL JOURNAL OF OFFSHORE AND POLAR ENGINEERING, 2024, 34 (01) : 19 - 28
  • [15] Development of a curled wake of a yawed wind turbine under turbulent and sheared inflow
    Hulsman, Paul
    Wosnik, Martin
    Petrovi, Vlaho
    Holling, Michael
    Kuhn, Martin
    WIND ENERGY SCIENCE, 2022, 7 (01) : 237 - 257
  • [16] Experimental investigation of the power performance of a minimal wind turbine array in an atmospheric boundary layer wind tunnel
    Dou, Bingzheng
    Guala, Michele
    Zeng, Pan
    Lei, Liping
    ENERGY CONVERSION AND MANAGEMENT, 2019, 196 : 906 - 919
  • [17] Influence of the geostrophic wind direction on the atmospheric boundary layer flow
    Howland, M. F.
    Ghate, A. S.
    Lele, S. K.
    JOURNAL OF FLUID MECHANICS, 2020, 883
  • [18] The effect of swell on marine atmospheric boundary layer and the operation of an offshore wind turbine
    Yang, Haoze
    Ge, Mingwei
    Gu, Bo
    Du, Bowen
    Liu, Yongqian
    ENERGY, 2022, 244
  • [19] Study on Complex Wake Characteristics of Yawed Wind Turbine Using Actuator Line Method
    Wang, Tengyuan
    Zhou, Shuni
    Cai, Chang
    Wang, Xinbao
    Wang, Zekun
    Zhang, Yuning
    Shi, Kezhong
    Zhong, Xiaohui
    Li, Qingan
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2023, 11 (05)
  • [20] Multi-scale/fractal processes in the wake of a wind turbine array boundary layer
    Ali, Naseem
    Fuchs, Andre
    Neunaber, Ingrid
    Peinke, Joachim
    Cal, Raul Bayoan
    JOURNAL OF TURBULENCE, 2019, 20 (02): : 93 - 120