Two-dimensional series evaluations via the elliptic functions of Ramanujan and Jacobi

被引:4
作者
Berndt, Bruce C. [1 ]
Lamb, George
Rogers, Mathew [2 ]
机构
[1] Univ Illinois, Dept Math, Urbana, IL 61801 USA
[2] Univ Montreal, Dept Math & Stat, Montreal, PQ H3T 1J4, Canada
基金
美国国家科学基金会;
关键词
Two-dimensional lattice sums; Ramanujan's theta functions; Class invariants; Singular moduli; Rogers-Ramanujan continued fraction; Cubic continued fraction; Jacobian elliptic functions; Hypergeometric functions; LATTICE SUMS;
D O I
10.1007/s11139-011-9351-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We evaluate in closed form, for the first time, certain classes of double series, which are remindful of lattice sums. Elliptic functions, singular moduli, class invariants, and the Rogers-Ramanujan continued fraction play central roles in our evaluations.
引用
收藏
页码:185 / 198
页数:14
相关论文
共 16 条
[1]  
Abramowitz M., 1964, HDB MATH FUNCTIONS, V55
[2]  
Andrews G.E., 2005, Ramanujan's Lost Notebook
[3]  
[Anonymous], 1989, A Wiley-Interscience Publication
[4]  
Berndt B.C., 1991, RAMAJUJANS NOTEBOO 3
[5]  
BERNDT BC, 1998, RAMANUJANS NOTEBOO 5
[6]   CONVERGENCE OF LATTICE SUMS AND MADELUNG CONSTANT [J].
BORWEIN, D ;
BORWEIN, JM ;
TAYLOR, KF .
JOURNAL OF MATHEMATICAL PHYSICS, 1985, 26 (11) :2999-3009
[7]   New representations for the Madelung constant [J].
Crandall, RE .
EXPERIMENTAL MATHEMATICS, 1999, 8 (04) :367-379
[8]   SOME NEW LATTICE SUMS INCLUDING AN EXACT RESULT FOR THE ELECTROSTATIC POTENTIAL WITHIN THE NACL LATTICE [J].
FORRESTER, PJ ;
GLASSER, ML .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1982, 15 (03) :911-914
[9]  
Gradshteyn I S., 2007, Tables of Integrals, Series and Products, V(eds)
[10]  
Rogers M., 2011, ARXIV11021153MATHNT