Advances in Microfluidic Materials, Functions, Integration, and Applications

被引:757
作者
Nge, Pamela N. [1 ]
Rogers, Chad I. [1 ]
Woolley, Adam T. [1 ]
机构
[1] Brigham Young Univ, Dept Chem & Biochem, Provo, UT 84602 USA
基金
美国国家卫生研究院;
关键词
TOTAL ANALYSIS SYSTEMS; ON-A-CHIP; MICROCHIP CAPILLARY-ELECTROPHORESIS; SOLID-PHASE EXTRACTION; POLYMERASE-CHAIN-REACTION; SINGLE-CELL ANALYSIS; DRIVEN LIQUID-CHROMATOGRAPHY; LARGE-SCALE INTEGRATION; SURFACE MODIFICATION; MASS-SPECTROMETRY;
D O I
10.1021/cr300337x
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The field of microfluidics has progressed with applications cutting across multiple fields and disciplines. Microfluidic device materials initially consisted of silicon and glass substrates. Low-temperature cofired ceramic (LTCC) can be fabricated into complex three-dimensional devices where each layer can be inspected for quality control before inclusion in the stack. Polymers are organic-based, long-chain materials that have gained significant traction in microfluidics. Polydimethylsiloxane (PDMS) is the most common microfluidic substrate in use in academic laboratories due to its reasonable cost, rapid fabrication, and ease of implementation. The inertness of perfluorinated compounds makes this class of materials attractive for microfluidics. Paper-based microfluidics rely on the passive mechanism of capillary action to pull solutions through a device. Microfluidic systems are well suited for planetary probes.
引用
收藏
页码:2550 / 2583
页数:34
相关论文
共 364 条
[1]   Syringe-vacuum microfluidics: A portable technique to create monodisperse emulsions [J].
Abate, Adam R. ;
Weitz, David A. .
BIOMICROFLUIDICS, 2011, 5 (01)
[2]   Hybrid microfluidics: A digital-to-channel interface for in-line sample processing and chemical separations [J].
Abdelgawad, Mohamed ;
Watson, Michael W. L. ;
Wheeler, Aaron R. .
LAB ON A CHIP, 2009, 9 (08) :1046-1051
[3]   Miniaturized nucleic acid amplification systems for rapid and point-of-care diagnostics: A review [J].
Ahmad, Farhan ;
Hashsham, Syed A. .
ANALYTICA CHIMICA ACTA, 2012, 733 :1-15
[4]   A millisecond micromixer via single-bubble-based acoustic streaming [J].
Ahmed, Daniel ;
Mao, Xiaole ;
Shi, Jinjie ;
Juluri, Bala Krishna ;
Huang, Tony Jun .
LAB ON A CHIP, 2009, 9 (18) :2738-2741
[5]   Novel LTCC-potentiometric microfluidic device for biparametric analysis of organic compounds carrying plastic antibodies as ionophores: Application to sulfamethoxazole and trimethoprim [J].
Almeida, S. A. A. ;
Arasa, E. ;
Puyol, M. ;
Martinez-Cisneros, C. S. ;
Alonso-Chamarro, J. ;
Montenegro, M. C. B. S. M. ;
Sales, M. G. F. .
BIOSENSORS & BIOELECTRONICS, 2011, 30 (01) :197-203
[6]   Transient deflection response in microcantilever array integrated with polydimethylsiloxane (PDMS) microfluidics [J].
Anderson, Ryan R. ;
Hu, Weisheng ;
Noh, Jong Wook ;
Dahlquist, William C. ;
Ness, Stanley J. ;
Gustafson, Timothy M. ;
Richards, Danny C. ;
Kim, Seunghyun ;
Mazzeo, Brian A. ;
Woolley, Adam T. ;
Nordin, Gregory P. .
LAB ON A CHIP, 2011, 11 (12) :2088-2096
[7]  
Angelescu D.E., 2011, Highly Integrated Microfluidic Design, P115
[8]   Parametric study on mixing of two fluids in a three-dimensional serpentine microchannel [J].
Ansari, Mubashshir Ahmad ;
Kim, Kwang-Yong .
CHEMICAL ENGINEERING JOURNAL, 2009, 146 (03) :439-448
[9]   Microfluidic very large scale integration (mVLSI) with integrated micromechanical valves [J].
Araci, Ismail Emre ;
Quake, Stephen R. .
LAB ON A CHIP, 2012, 12 (16) :2803-2806
[10]   Microfluidic chips for protein differential expression profiling [J].
Armenta, Jenny M. ;
Dawoud, Abdulilah A. ;
Lazar, Iulia M. .
ELECTROPHORESIS, 2009, 30 (07) :1145-1156