Understanding the catalyst-free transformation of amorphous carbon into graphene by current-induced annealing

被引:74
作者
Barreiro, Amelia [1 ]
Boerrnert, Felix [2 ]
Avdoshenko, Stanislav M. [3 ,4 ,5 ]
Rellinghaus, Bernd [2 ]
Cuniberti, Gianaurelio [3 ,4 ,6 ]
Ruemmeli, Mark H. [2 ,7 ]
Vandersypen, Lieven M. K. [1 ]
机构
[1] Delft Univ Technol, Kavli Inst Nanosci, NL-2628 CJ Delft, Netherlands
[2] IFW Dresden, D-01171 Dresden, Germany
[3] Tech Univ Dresden, Inst Mat Sci, D-01062 Dresden, Germany
[4] Tech Univ Dresden, Max Bergmann Ctr Biomat, D-01062 Dresden, Germany
[5] Purdue Univ, Sch Mat Engn, W Lafayette, IN 47907 USA
[6] POSTECH, Div IT Convergence Engn, Pohang 790784, South Korea
[7] Tech Univ Dresden, Dept Phys, D-01062 Dresden, Germany
基金
新加坡国家研究基金会;
关键词
CHEMICAL MOLECULAR-DYNAMICS; IN-SITU OBSERVATION; FREE GROWTH; NANOTUBES; PHASE; SUBLIMATION; GAS;
D O I
10.1038/srep01115
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We shed light on the catalyst-free growth of graphene from amorphous carbon (a-C) by current-induced annealing by witnessing the mechanism both with in-situ transmission electron microscopy and with molecular dynamics simulations. Both in experiment and in simulation, we observe that small a-C clusters on top of a graphene substrate rearrange and crystallize into graphene patches. The process is aided by the high temperatures involved and by the van der Waals interactions with the substrate. Furthermore, in the presence of a-C, graphene can grow from the borders of holes and form a seamless graphene sheet, a novel finding that has not been reported before and that is reproduced by the simulations as well. These findings open up new avenues for bottom-up engineering of graphene-based devices.
引用
收藏
页数:6
相关论文
共 51 条
[1]   Graphitization of amorphous carbon on a multiwall carbon nanotube surface by catalyst-free heating [J].
Asaka, Koji ;
Karita, Motoyuki ;
Saito, Yahachi .
APPLIED PHYSICS LETTERS, 2011, 99 (09)
[2]  
Bacon R., 1957, Bulletin of the American Chemical Society, V2, P131
[3]   Irradiation effects in carbon nanostructures [J].
Banhart, F .
REPORTS ON PROGRESS IN PHYSICS, 1999, 62 (08) :1181-1221
[4]   Graphene at High Bias: Cracking, Layer by Layer Sublimation, and Fusing [J].
Barreiro, A. ;
Boerrnert, F. ;
Ruemmeli, M. H. ;
Buechner, B. ;
Vandersypen, L. M. K. .
NANO LETTERS, 2012, 12 (04) :1873-1878
[5]   Subnanometer motion of cargoes driven by thermal gradients along carbon nanotubes [J].
Barreiro, Amelia ;
Rurali, Riccardo ;
Hernandez, Eduardo R. ;
Moser, Joel ;
Pichler, Thomas ;
Forro, Laszlo ;
Bachtold, Adrian .
SCIENCE, 2008, 320 (5877) :775-778
[6]   Structured Graphene Devices for Mass Transport [J].
Barreiro, Amelia ;
Rurali, Riccardo ;
Hernandez, Eduardo R. ;
Bachtold, Adrian .
SMALL, 2011, 7 (06) :775-780
[7]   Lattice Expansion in Seamless Bilayer Graphene Constrictions at High Bias [J].
Boerrnert, Felix ;
Barreiro, Amelia ;
Wolf, Daniel ;
Katsnelson, Mikhail I. ;
Buechner, Bernd ;
Vandersypen, Lieven M. K. ;
Ruemmeli, Mark H. .
NANO LETTERS, 2012, 12 (09) :4455-4459
[8]   In situ observations of self-repairing single-walled carbon nanotubes [J].
Boerrnert, Felix ;
Gorantla, Sandeep ;
Bachmatiuk, Alicja ;
Warner, Jamie H. ;
Ibrahim, Imad ;
Thomas, Juergen ;
Gemming, Thomas ;
Eckert, Juergen ;
Cuniberti, Gianaurelio ;
Buechner, Bernd ;
Ruemmeli, Mark H. .
PHYSICAL REVIEW B, 2010, 81 (20)
[9]   Observation of the fractional quantum Hall effect in graphene [J].
Bolotin, Kirill I. ;
Ghahari, Fereshte ;
Shulman, Michael D. ;
Stormer, Horst L. ;
Kim, Philip .
NATURE, 2009, 462 (7270) :196-199
[10]   Oxygen-Aided Synthesis of Polycrystalline Graphene on Silicon Dioxide Substrates [J].
Chen, Jianyi ;
Wen, Yugeng ;
Guo, Yunlong ;
Wu, Bin ;
Huang, Liping ;
Xue, Yunzhou ;
Geng, Dechao ;
Wang, Dong ;
Yu, Gui ;
Liu, Yunqi .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (44) :17548-17551