Flux lattices reformulated

被引:21
作者
Juzeliunas, G. [1 ]
Spielman, I. B. [2 ,3 ]
机构
[1] Vilnius State Univ, Inst Theoret Phys & Astron, LT-01108 Vilnius, Lithuania
[2] NIST, Joint Quantum Inst, Gaithersburg, MD 20899 USA
[3] Univ Maryland, Gaithersburg, MD 20899 USA
基金
美国国家科学基金会;
关键词
EFFECTIVE MAGNETIC-FIELDS; GAUGE POTENTIALS; GEOMETRIC POTENTIALS; OPTICAL LATTICES; PHASE; ELECTRONS; MONOPOLE; GASES; ATOMS; LIGHT;
D O I
10.1088/1367-2630/14/12/123022
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We theoretically explore the optical flux lattices produced for ultra-cold atoms subject to laser fields where both the atom-light coupling and the effective detuning are spatially periodic. We analyze the geometric vector potential and the magnetic flux it generates, as well as the accompanying geometric scalar potential. We show how to understand the gauge-dependent Aharonov-Bohm singularities in the vector potential, and calculate the continuous magnetic flux through the elementary cell in terms of these singularities. The analysis is illustrated with a square optical flux lattice. We conclude with an explicit laser configuration yielding such a lattice using a set of five properly chosen beams with two counterpropagating pairs (one along the x axes and the other along the y axes), together with a single beam along the z-axis. We show that this lattice is not phase-stable, and identify the one phase-difference that affects the magnetic flux. Thus armed with a realistic laser setup, we directly compute the Chern number of the lowest Bloch band to identify the region where the non-zero magnetic flux produces a topologically non-trivial band structure.
引用
收藏
页数:22
相关论文
共 64 条
[1]   ORIGIN OF THE GEOMETRIC FORCES ACCOMPANYING BERRY GEOMETRIC POTENTIALS [J].
AHARONOV, Y ;
STERN, A .
PHYSICAL REVIEW LETTERS, 1992, 69 (25) :3593-3597
[2]   SIGNIFICANCE OF ELECTROMAGNETIC POTENTIALS IN THE QUANTUM THEORY [J].
AHARONOV, Y ;
BOHM, D .
PHYSICAL REVIEW, 1959, 115 (03) :485-491
[3]   Experimental Realization of Strong Effective Magnetic Fields in an Optical Lattice [J].
Aidelsburger, M. ;
Atala, M. ;
Nascimbene, S. ;
Trotzky, S. ;
Chen, Y. -A. ;
Bloch, I. .
PHYSICAL REVIEW LETTERS, 2011, 107 (25)
[4]   Many-body physics with ultracold gases [J].
Bloch, Immanuel ;
Dalibard, Jean ;
Zwerger, Wilhelm .
REVIEWS OF MODERN PHYSICS, 2008, 80 (03) :885-964
[5]   THE BERRY CONNECTION AND BORN-OPPENHEIMER METHOD [J].
BOHM, A ;
KENDRICK, B ;
LOEWE, ME ;
BOYA, LJ .
JOURNAL OF MATHEMATICAL PHYSICS, 1992, 33 (03) :977-989
[6]  
Bohm A., 2003, Geometric Phases in Quantum Systems
[7]   Measurement of nuclear spin [J].
Breit, G ;
Rabi, II .
PHYSICAL REVIEW, 1931, 38 (11) :2082-2083
[8]   Geometric potentials in quantum optics: A semi-classical interpretation [J].
Cheneau, M. ;
Rath, S. P. ;
Yefsah, T. ;
Guenter, K. J. ;
Juzeliunas, G. ;
Dalibard, J. .
EPL, 2008, 83 (06)
[9]   Spin-Injection Spectroscopy of a Spin-Orbit Coupled Fermi Gas [J].
Cheuk, Lawrence W. ;
Sommer, Ariel T. ;
Hadzibabic, Zoran ;
Yefsah, Tarik ;
Bakr, Waseem S. ;
Zwierlein, Martin W. .
PHYSICAL REVIEW LETTERS, 2012, 109 (09)
[10]   Optical flux lattices for two-photon dressed states [J].
Cooper, N. R. ;
Dalibard, J. .
EPL, 2011, 95 (06)