InP HEMTs for Sub-mW Cryogenic Low-Noise Amplifiers

被引:57
作者
Cha, Eunjung [1 ]
Wadefalk, Niklas [2 ]
Moschetti, Giuseppe [3 ]
Pourkabirian, Arsalan [2 ]
Stenarson, Jorgen [2 ]
Grahn, Jan [1 ]
机构
[1] Chalmers Univ Technol, Dept Microtechnol & Nanosci, S-41296 Gothenburg, Sweden
[2] Low Noise Factory AB, S-41663 Gothenburg, Sweden
[3] Qamcom Res & Technol AB, S-41285 Gothenburg, Sweden
关键词
Cryogenic; C-band; InP high-electron-mobility transistor (InP HEMT); low-noise amplifier (LNA); noise; power dissipation; WIDE-BAND; CONTACTS; GHZ;
D O I
10.1109/LED.2020.3000071
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper reports on a 100-nm gate length InP high-electron-mobility transistor (HEMT) technology for cryogenic low-noise amplifiers (LNAs) with ultra-low power dissipation of 112 mu W. This result was obtained by using 100-nm gate length InP HEMTs with improved transconductance at low drain current through a scaled-down gate-channel distance while maintaining a low gate leakage current with the use of an InP etch stop layer and Pt gate metal. The noise performance of InP HEMTs was demonstrated in a 4-8 GHz (C-band) three-stage hybrid LNA at the ambient temperature of 5 K. At a dc power dissipation of 300 mu W, the average noise temperature was 2.8 K with 27 dB gain. At a dc power dissipation of 112 mu W, the LNA exhibited an average noise temperature of 4.1 K with a gain of 20 dB. The presented results demonstrate the large potential of InP HEMT technology for sub-mW cryogenic LNA design.
引用
收藏
页码:1005 / 1008
页数:4
相关论文
共 28 条
[1]   4-12-and 25-34-GHz Cryogenic mHEMT MMIC Low-Noise Amplifiers [J].
Aja Abelan, Beatriz ;
Seelmann-Eggebert, Matthias ;
Bruch, Daniel ;
Leuther, Arnulf ;
Massler, Hermann ;
Baldischweiler, Boris ;
Schlechtweg, Michael ;
Daniel Gallego-Puyol, Juan ;
Lopez-Fernandez, Isaac ;
Diez-Gonzalez, Carmen ;
Malo-Gomez, Inmaculada ;
Villa, Enrique ;
Artal, Eduardo .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2012, 60 (12) :4080-4088
[2]   Quantum supremacy using a programmable superconducting processor [J].
Arute, Frank ;
Arya, Kunal ;
Babbush, Ryan ;
Bacon, Dave ;
Bardin, Joseph C. ;
Barends, Rami ;
Biswas, Rupak ;
Boixo, Sergio ;
Brandao, Fernando G. S. L. ;
Buell, David A. ;
Burkett, Brian ;
Chen, Yu ;
Chen, Zijun ;
Chiaro, Ben ;
Collins, Roberto ;
Courtney, William ;
Dunsworth, Andrew ;
Farhi, Edward ;
Foxen, Brooks ;
Fowler, Austin ;
Gidney, Craig ;
Giustina, Marissa ;
Graff, Rob ;
Guerin, Keith ;
Habegger, Steve ;
Harrigan, Matthew P. ;
Hartmann, Michael J. ;
Ho, Alan ;
Hoffmann, Markus ;
Huang, Trent ;
Humble, Travis S. ;
Isakov, Sergei V. ;
Jeffrey, Evan ;
Jiang, Zhang ;
Kafri, Dvir ;
Kechedzhi, Kostyantyn ;
Kelly, Julian ;
Klimov, Paul V. ;
Knysh, Sergey ;
Korotkov, Alexander ;
Kostritsa, Fedor ;
Landhuis, David ;
Lindmark, Mike ;
Lucero, Erik ;
Lyakh, Dmitry ;
Mandra, Salvatore ;
McClean, Jarrod R. ;
McEwen, Matthew ;
Megrant, Anthony ;
Mi, Xiao .
NATURE, 2019, 574 (7779) :505-+
[3]   TFET-Based Circuit Design Using the Transconductance Generation Efficiency gm/Id Method [J].
Barboni, Leonardo ;
Siniscalchi, Mariana ;
Sensale-Rodriguez, Berardi .
IEEE JOURNAL OF THE ELECTRON DEVICES SOCIETY, 2015, 3 (03) :214-222
[4]   Theoretical Limit of Low Temperature Subthreshold Swing in Field-Effect Transistors [J].
Beckers, Arnout ;
Jazaeri, Farzan ;
Enz, Christian .
IEEE ELECTRON DEVICE LETTERS, 2020, 41 (02) :276-279
[5]   0.3-14 and 16-28 GHz Wide-Bandwidth Cryogenic MMIC Low-Noise Amplifiers [J].
Cha, Eunjung ;
Wadefalk, Niklas ;
Nilsson, Per-Ake ;
Schleeh, Joel ;
Moschetti, Giuseppe ;
Pourkabirian, Arsalan ;
Tuzi, Silvia ;
Grahn, Jan .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2018, 66 (11) :4860-4869
[6]   Two-Finger InP HEMT Design for Stable Cryogenic Operation of Ultra-Low-Noise Ka- and Q-Band LNAs [J].
Cha, Eunjung ;
Moschetti, Giuseppe ;
Wadefalk, Niklas ;
Nilsson, Per-Ake ;
Bevilacqua, Stella ;
Pourkabirian, Arsalan ;
Starski, Piotr ;
Grahn, Jan .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2017, 65 (12) :5171-5180
[7]   High-performance InP-Based enhancement-mode HEMT's using non-alloyed ohmic contacts and Pt-based buried-gate technologies [J].
Chen, KJ ;
Enoki, T ;
Maezawa, K ;
Arai, K ;
Yamamoto, M .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 1996, 43 (02) :252-257
[8]   1.09-EV SCHOTTKY-BARRIER HEIGHT OF NEARLY IDEAL PT/AU CONTACTS DIRECTLY DEPOSITED ON N-AL0.48IN0.52AS AND P+N-AL0.48IN0.52AS LAYERS [J].
FRICKE, A ;
STAREEV, G ;
KUMMETZ, T ;
SOWADA, D ;
MAHNSS, J ;
KOWALSKY, W ;
EBELING, KJ .
APPLIED PHYSICS LETTERS, 1994, 65 (06) :755-757
[9]  
HARADA N, 1991, INDIUM PHOSPHIDE AND RELATED MATERIALS : THIRD INTERNATIONAL CONFERENCE, VOLS 1 AND 2, P377, DOI 10.1109/ICIPRM.1991.147394
[10]   Measurements of thermally induced nanometer-scale diffusion depth of Pt/Ti/Pt/Au gate metallization on InAlAs/InGaAs high-electron-mobility transistors [J].
Kim, S ;
Adesida, I ;
Hwang, H .
APPLIED PHYSICS LETTERS, 2005, 87 (23) :1-3