New results of periodic solutions for forced Rayleigh-type equations

被引:17
作者
Li, Yaqiong [1 ]
Huang, Lihong [1 ]
机构
[1] Hunan Univ, Coll Math & Econometr, Changsha 410082, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Periodic solutions; Rayleigh equation; Topological degree;
D O I
10.1016/j.cam.2007.10.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we use the coincidence degree theory to establish new results on the existence and uniqueness of T-periodic solutions for a kind of forced Rayleigh equation of the form x '' + f (t, x'(t)) + g(t, x(t)) = e(t). (C) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:98 / 105
页数:8
相关论文
共 13 条
[1]  
[Anonymous], 1964, NONLINEAR DIFFERENTI
[2]  
Antosiewicz H. A., 1955, J LOND MATH SOC, V30, P64
[3]  
Burton TA., 2005, Stability and periodic solutions of ordinary and functional differential equations
[4]  
CHEN HB, 2004, ACTA MATH SINICA, V47, P417
[5]  
Deimling K., 2010, NONLINEAR FUNCTIONAL, DOI DOI 10.1007/978-3-662-00547-7
[6]  
Gaines R. E., 1977, Coincidence degree, and nonlinear differential equations
[7]  
Hale J. K., 1977, Applied Mathematical Sciences, V3
[8]  
HUANG XG, 1994, CHINESE SCI BULL, V39, P193
[9]   On the existence of periodic solutions to p-Laplacian Rayleigh differential equation with a delay [J].
Lu, Shiping ;
Gui, Zhanjie .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 325 (01) :685-702
[10]   Some new results on the existence of periodic solutions to a kind of Rayleigh equation with a deviating argument [J].
Lu, SP ;
Ge, WG .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2004, 56 (04) :501-514