Tissue classification with generalized spectrum parameters

被引:57
作者
Donohue, KD [1 ]
Huang, L
Burks, T
Forsberg, F
Piccoli, CW
机构
[1] Univ Kentucky, Dept Elect & Comp Engn, Lexington, KY 40506 USA
[2] Univ Florida, Dept Biol & Agr Engn, Gainesville, FL USA
[3] Thomas Jefferson Univ, Dept Radiol, Philadelphia, PA 19107 USA
关键词
breast tissue; generalized spectrum; tissue characterization; texture analysis; tumor discrimination; ultrasound imaging;
D O I
10.1016/S0301-5629(01)00468-9
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
This paper presents performance comparisons between breast tumor classifiers based on parameters from a conventional texture analysis (CTA) and the generalized spectrum (GS). The computations of GS-based parameters from radiofrequency (RF) ultrasonic scans and their relationship to underlying scatterer properties are described. Clinical experiments demonstrate classifier performances using 22 benign and 24 malignant breast mass regions taken from 40 patients. Linear classifiers based on parameters from the front edge, back edge and interior tumor regions are examined. Results show significantly better performances for GS-based classifiers, with improvements in empirical receiver operating characteristic (ROC) areas of greater than 10%. The ROC curves show GS-based classifiers achieving a 90% sensitivity level at 50% specificity when applied to the back-edge tumor regions, an 80% sensitivity level at 65% specificity when applied to the front-edge tumor regions, and a 100% sensitivity level at 45% specificity when applied to the interior tumor regions. (C) 2001 World Federation for Ultrasound in Medicine & Biology.
引用
收藏
页码:1505 / 1514
页数:10
相关论文
共 37 条
[1]  
[Anonymous], 1996, ANALOG DIGITAL COMMU
[2]   Random field models in the textural analysis of ultrasonic images of the liver [J].
Bleck, JS ;
Ranft, U ;
Gebel, M ;
Hecker, H ;
WesthoffBleck, M ;
Thiesemann, C ;
Wagner, S .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 1996, 15 (06) :796-801
[3]   Breast cancer diagnosis using self-organizing map for sonography [J].
Chen, DR ;
Chang, RF ;
Huang, YL .
ULTRASOUND IN MEDICINE AND BIOLOGY, 2000, 26 (03) :405-411
[4]  
DAPONTE J, 1994, P SOC PHOTO-OPT INS, V2243, P266, DOI 10.1117/12.169973
[5]   Analysis and classification of tissue with scatterer structure templates [J].
Donohue, KD ;
Forsberg, F ;
Piccoli, CW ;
Goldberg, BB .
IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 1999, 46 (02) :300-310
[6]  
DONOHUE KD, 1999, P IEEE ULTR S, V2, P1353
[7]  
Fukunaga K., 1990, INTRO STAT PATTERN R
[8]  
GEORGIOU G, 2001, IEEE T ULTRASON FERR, V48, P569
[9]  
Gerr N. L., 1994, Digital Signal Processing, V4, P222, DOI 10.1006/dspr.1994.1022
[10]  
Gose E., 1996, PATTERN RECOGNITION