Iron Particle Nanodrilling of Few Layer Graphene at Low Electron Beam Accelerating Voltages

被引:9
作者
Campos-Delgado, Jessica [1 ]
Baptista, Daniel L. [1 ]
Fuentes-Cabrera, Miguel [2 ,3 ]
Sumpter, Bobby G. [2 ,3 ]
Meunier, Vincent [4 ]
Terrones, Humberto [2 ,3 ,5 ]
Kim, Yoong Ahm [6 ]
Muramatsu, Hiroyuki [6 ]
Hayashi, Takuya [6 ]
Endo, Morinobu [6 ]
Terrones, Mauricio [5 ,6 ,7 ,8 ]
Achete, Carlos A. [1 ]
机构
[1] Natl Inst Metrol, Div Mat Metrol, Xerem, Duque De Caxias, Brazil
[2] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA
[3] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA
[4] Rensselaer Polytech Inst, Dept Phys Appl Phys & Astron, Troy, NY 12180 USA
[5] Penn State Univ, Dept Phys, Davey Lab 104, University Pk, PA 16802 USA
[6] Shinshu Univ, Res Ctr Exot Nanocarbons JST, Nagano 3808553, Japan
[7] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA
[8] Penn State Univ, Mat Res Inst, Davey Lab 104, University Pk, PA 16802 USA
关键词
low voltage processes; few-layer graphene; iron nanoparticles; nanodrilling; TOTAL-ENERGY CALCULATIONS; CARBON; PSEUDOPOTENTIALS; STABILITY; MECHANISM; DYNAMICS; METALS;
D O I
10.1002/ppsc.201200041
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Atomic vacancies in graphene are created under relatively low energy electron bombardment, but the formation of vacancies is significanlty enhanced by iron nanocatalysis. The evolution of the overall process involves nanoparticle agglomeration, interlayer migration, and confinement to nearby defects. The catalytic activation of metal nanoparticles via elecron irradiation on graphene-like surfaces appears to be a novel process that can be used to obtain porous graphene sheets with high surface areas. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
引用
收藏
页码:76 / 82
页数:7
相关论文
共 50 条
[1]   Surface reconstructions and dimensional changes in single-walled carbon nanotubes [J].
Ajayan, PM ;
Ravikumar, V ;
Charlier, JC .
PHYSICAL REVIEW LETTERS, 1998, 81 (07) :1437-1440
[2]  
Bai JW, 2010, NAT NANOTECHNOL, V5, P190, DOI [10.1038/NNANO.2010.8, 10.1038/nnano.2010.8]
[3]  
Balandin AA, 2011, NAT MATER, V10, P569, DOI [10.1038/nmat3064, 10.1038/NMAT3064]
[4]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[5]   Discrete Dynamics of Nanoparticle Channelling in Suspended Graphene [J].
Booth, Tim J. ;
Pizzocchero, Filippo ;
Andersen, Henrik ;
Hansen, Thomas W. ;
Wagner, Jakob B. ;
Jinschek, Joerg R. ;
Dunin-Borkowski, Rafal E. ;
Hansen, Ole ;
Boggild, Peter .
NANO LETTERS, 2011, 11 (07) :2689-2692
[6]   Anisotropic Etching and Nanoribbon Formation in Single-Layer Graphene [J].
Campos, Leonardo C. ;
Manfrinato, Vitor R. ;
Sanchez-Yamagishi, Javier D. ;
Kong, Jing ;
Jarillo-Herrero, Pablo .
NANO LETTERS, 2009, 9 (07) :2600-2604
[7]   Thermal stability studies of CVD-grown graphene nanoribbons: Defect annealing and loop formation [J].
Campos-Delgado, J. ;
Kim, Y. A. ;
Hayashi, T. ;
Morelos-Gomez, A. ;
Hofmann, M. ;
Muramatsu, H. ;
Endo, M. ;
Terrones, H. ;
Shull, R. D. ;
Dresselhaus, M. S. ;
Terrones, M. .
CHEMICAL PHYSICS LETTERS, 2009, 469 (1-3) :177-182
[8]   Bulk production of a new form of sp2 carbon:: Crystalline graphene nanoribbons [J].
Campos-Delgado, Jessica ;
Romo-Herrera, Jose Manuel ;
Jia, Xiaoting ;
Cullen, David A. ;
Muramatsu, Hiroyuki ;
Kim, Yoong Ahm ;
Hayashi, Takuya ;
Ren, Zhifeng ;
Smith, David J. ;
Okuno, Yu ;
Ohba, Tomonori ;
Kanoh, Hirofumi ;
Kaneko, Katsumi ;
Endo, Morinobu ;
Terrones, Humberto ;
Dresselhaus, Mildred S. ;
Terrones, Mauriclo .
NANO LETTERS, 2008, 8 (09) :2773-2778
[10]   GROUND-STATE OF THE ELECTRON-GAS BY A STOCHASTIC METHOD [J].
CEPERLEY, DM ;
ALDER, BJ .
PHYSICAL REVIEW LETTERS, 1980, 45 (07) :566-569