Automorphism groups of tetravalent Cayley graphs on regular p-groups

被引:22
作者
Feng, YQ [1 ]
Xu, MY
机构
[1] Beijing Jiaotong Univ, Dept Math, Beijing 100044, Peoples R China
[2] Peking Univ, Dept Math, Beijing 100871, Peoples R China
基金
中国国家自然科学基金;
关键词
Cayley graph; normal Cayley graph; regular p-group;
D O I
10.1016/j.disc.2005.10.009
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let Cay(G, S) be a connected tetravalent Cayley graph on a regular p-group G and let Aut(G) be the automorphism group of G. In this paper, it is proved that, for each prime p 5 2, 5, the automorphism group of the Cayley graph Cay(G, S) is the semidirect product R(G) x Aut(G, S) where R(G) is the right regular representation of G and Aut(G, S) = (alpha is an element of Aut(G)vertical bar S-alpha = S). The proof depends on the classification of finite simple groups. This implies that if p A 2, 5 then the Cayley graph Cay(G, S) is normal, namely, the automorphism group of Cay(G, S) contains R(G) as a normal subgroup. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:354 / 360
页数:7
相关论文
共 26 条
[1]  
Alspach B., 1973, Journal of Combinatorial Theory, Series B, V15, P12, DOI 10.1016/0095-8956(73)90027-0
[2]  
[Anonymous], 1982, U SERIES MATH
[3]  
Baik YG, 1998, ALGEBR COLLOQ, V5, P297
[4]  
Biggs N., 1993, ALGEBRAIC GRAPH THEO
[5]   Transitive permutation groups of prime-squared degree [J].
Dobson, E ;
Witte, D .
JOURNAL OF ALGEBRAIC COMBINATORICS, 2002, 16 (01) :43-69
[6]  
Du S.-F., 1998, AUSTRALASIAN J COMBI, V18, P227
[7]   On cubic Cayley graphs of finite simple groups [J].
Fang, XG ;
Li, CH ;
Wang, J ;
Xu, MY .
DISCRETE MATHEMATICS, 2002, 244 (1-3) :67-75
[8]   Automorphism groups of 2-valent connected Cayley digraphs on regular p-groups [J].
Feng, YQ ;
Wang, RJ ;
Xu, MY .
GRAPHS AND COMBINATORICS, 2002, 18 (02) :253-257
[9]   Automorphism groups of 4-valent connected Cayley graphs of p-groups [J].
Feng, YQ ;
Kwak, JH ;
Wang, RJ .
CHINESE ANNALS OF MATHEMATICS SERIES B, 2001, 22 (03) :281-286
[10]   A family of nonnormal Cayley digraphs [J].
Feng, YQ ;
Wang, DJ ;
Chen, JL .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2001, 17 (01) :147-152