Exposing the Causal Effect of Body Mass Index on the Risk of Type 2 Diabetes Mellitus: A Mendelian Randomization Study

被引:48
作者
Cheng, Liang [1 ]
Zhuang, He [1 ]
Ju, Hong [2 ]
Yang, Shuo [1 ]
Han, Junwei [1 ]
Tan, Renjie [1 ]
Hu, Yang [3 ]
机构
[1] Harbin Med Univ, Coll Bioinformat Sci & Technol, Harbin, Heilongjiang, Peoples R China
[2] Heilongilang Biol Sci & Technol Career Acad, Dept Informat Engn, Harbin, Heilongjiang, Peoples R China
[3] Harbin Inst Technol, Sch Life Sci & Technol, Harbin, Heilongjiang, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
body mass index; type 2 diabetes mellitus; casual effect; Mendelian randomisation; phenotype; ALZHEIMERS-DISEASE; GENETIC-VARIANTS; OBESITY; POLYMORPHISM; ASSOCIATIONS; PREDICTION; INSIGHTS; NETWORK; BMI;
D O I
10.3389/fgene.2019.00094
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Introduction: High body mass index (BMI) is a positive associated phenotype of type 2 diabetes mellitus (T2DM). Abundant studies have observed this from a clinical perspective. Since the rapid increase in a large number of genetic variants from the genome-wide association studies (GWAS), common SNPs of BMI and T2DM were identified as the genetic basis for understanding their associations. Currently, their causality is beginning to blur. Materials and Methods: To classify it, a Mendelian randomisation (MR), using genetic instrumental variables (IVs) to explore the causality of intermediate phenotype and disease, was utilized here to test the effect of BMI on the risk of T2DM. In this article, MR was carried out on GWAS data using 52 independent BMI SNPs as IVs. The pooled odds ratio (OR) of these SNPs was calculated using inverse-variance weighted method for the assessment of 5 kg/m(2) higher BMI on the risk of T2DM. The leave-one-out validation was conducted to identify the effect of individual SNPs. MR-Egger regression was utilized to detect potential pleiotropic bias of variants. Results: We obtained the high OR (1.470; 95% CI 1.170 to 1.847; P = 0.001), low intercept (0.004, P = 0.661), and small fluctuation of ORs {from -0.039 [(1.412 - 1.470) / 1.470)] to 0.075 [(1.568- 1.470) / 1.470)] in leave-one-out validation. Conclusion: We validate the causal effect of high BMI on the risk of T2DM. The low intercept shows no pleiotropic bias of IVs. The small alterations of ORs activated by removing individual SNPs showed no single SNP drives our estimate.
引用
收藏
页数:10
相关论文
共 56 条
[1]   Low physical activity accentuates the effect of the FTO rs9939609 polymorphism on body fat accumulation [J].
Andreasen, Camilla H. ;
Stender-Petersen, Kirstine L. ;
Mogensen, Mette S. ;
Torekov, Signe S. ;
Wegner, Lise ;
Andersen, Gitte ;
Nielsen, Arne L. ;
Albrechtsen, Anders ;
Borch-Johnsen, Knut ;
Rasmussen, Signe S. ;
Clausen, Jesper O. ;
Sandbaek, Annelli ;
Lauritzen, Torsten ;
Hansen, Lars ;
Jorgensen, Torben ;
Pedersen, Oluf ;
Hansen, Torben .
DIABETES, 2008, 57 (01) :95-101
[2]  
BENN M, 2017, BMJ-BRIT MED J, V357, DOI DOI 10.1136/BMJ.J1648
[3]   Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression [J].
Bowden, Jack ;
Smith, George Davey ;
Burgess, Stephen .
INTERNATIONAL JOURNAL OF EPIDEMIOLOGY, 2015, 44 (02) :512-525
[4]   Spiking Neural P Systems With Scheduled Synapses [J].
Cabarle, Francis George C. ;
Adorna, Henry N. ;
Jiang, Min ;
Zeng, Xiangxiang .
IEEE TRANSACTIONS ON NANOBIOSCIENCE, 2017, 16 (08) :792-801
[5]   Combined effects of MC4R and FTO common genetic variants on obesity in European general populations [J].
Cauchi, Stephane ;
Stutzmann, Fanny ;
Cavalcanti-Proenca, Christine ;
Durand, Emmanuelle ;
Pouta, Anneli ;
Hartikainen, Anna-Liisa ;
Marre, Michel ;
Vol, Sylviane ;
Tammelin, Tuija ;
Laitinen, Jaana ;
Gonzalez-Izquierdo, Arturo ;
Blakemore, Alexandra I. F. ;
Elliott, Paul ;
Meyre, David ;
Balkau, Beverley ;
Jaervelin, Marjo-Riitta ;
Froguel, Philippe .
JOURNAL OF MOLECULAR MEDICINE-JMM, 2009, 87 (05) :537-546
[6]  
Chen Fengmei, 2015, Zhonghua Yu Fang Yi Xue Za Zhi, V49, P1092
[7]  
Chen X Y, 2016, Zhonghua Liu Xing Bing Xue Za Zhi, V37, P1332, DOI 10.3760/cma.j.issn.0254-6450.2016.10.003
[8]   LncRNA2Target v2.0: a comprehensive database for target genes of lncRNAs in human and mouse [J].
Cheng, Liang ;
Wang, Pingping ;
Tian, Rui ;
Wang, Song ;
Guo, Qinghua ;
Luo, Meng ;
Zhou, Wenyang ;
Liu, Guiyou ;
Jiang, Huijie ;
Jiang, Qinghua .
NUCLEIC ACIDS RESEARCH, 2019, 47 (D1) :D140-D144
[9]   DincRNA: a comprehensive web-based bioinformatics toolkit for exploring disease associations and ncRNA function [J].
Cheng, Liang ;
Hu, Yang ;
Sun, Jie ;
Zhou, Meng ;
Jiang, Qinghua .
BIOINFORMATICS, 2018, 34 (11) :1953-1956
[10]   InfAcrOnt: calculating cross-ontology term similarities using information flow by a random walk [J].
Cheng, Liang ;
Jiang, Yue ;
Ju, Hong ;
Sun, Jie ;
Peng, Jiajie ;
Zhou, Meng ;
Hu, Yang .
BMC GENOMICS, 2018, 19