Least energy solutions to semi-linear elliptic problems on metric graphs
被引:9
|
作者:
Kurata, Kazuhiro
论文数: 0引用数: 0
h-index: 0
机构:
Tokyo Metropolitan Univ, Dept Math Sci, 1-1 Minami Osawa, Hachioji, Tokyo 1920397, JapanTokyo Metropolitan Univ, Dept Math Sci, 1-1 Minami Osawa, Hachioji, Tokyo 1920397, Japan
Kurata, Kazuhiro
[1
]
Shibata, Masataka
论文数: 0引用数: 0
h-index: 0
机构:
Tokyo Inst Technol, Dept Math, Meguro Ku, 2-12-1 Oh Okayama, Tokyo 1528551, JapanTokyo Metropolitan Univ, Dept Math Sci, 1-1 Minami Osawa, Hachioji, Tokyo 1920397, Japan
Shibata, Masataka
[2
]
机构:
[1] Tokyo Metropolitan Univ, Dept Math Sci, 1-1 Minami Osawa, Hachioji, Tokyo 1920397, Japan
[2] Tokyo Inst Technol, Dept Math, Meguro Ku, 2-12-1 Oh Okayama, Tokyo 1528551, Japan
Metric graph;
Variational method;
Least energy solution;
NONLINEAR SCHRODINGER-EQUATIONS;
GROUND-STATES;
D O I:
10.1016/j.jmaa.2020.124297
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
We consider positive solutions of semi-linear elliptic equations -epsilon(2)Delta u + u = u(p) on compact metric graphs, where 1 < p < infinity. For each epsilon > 0, there exists a least energy positive solution u(epsilon). We focus on the asymptotic behavior of u(epsilon) and show that u(epsilon) has exactly one local maximum point x(epsilon) and concentrates like a peak for sufficiently small epsilon. Moreover, we prove that the location of x(epsilon) is determined by the length of edges of graphs. These results are shown for the more general super-linear term f(u) instead of u(p). (C) 2020 Elsevier Inc. All rights reserved.