A BELLMAN FUNCTION PROOF OF THE L2 BUMP CONJECTURE

被引:24
作者
Nazarov, Fedor [1 ]
Reznikov, Alexander [2 ]
Treil, Sergei [3 ]
Volberg, Alexander [2 ]
机构
[1] Kent State Univ, Dept Math, Kent, OH 44242 USA
[2] Michigan State Univ, Dept Math, E Lansing, MI 48824 USA
[3] Brown Univ, Dept Math, Providence, RI 02912 USA
来源
JOURNAL D ANALYSE MATHEMATIQUE | 2013年 / 121卷
基金
美国国家科学基金会;
关键词
CALDERON-ZYGMUND OPERATORS; 2-WEIGHT INEQUALITIES; SINGULAR-INTEGRALS; NORM INEQUALITIES; BOUNDEDNESS;
D O I
10.1007/s11854-013-0035-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We approach the problem of finding the sharp sufficient condition for boundedness of all two weight Caldern-Zygmund operators. We solve this problem in L (2) by writing a formula for a Bellman function of the problem.
引用
收藏
页码:255 / 277
页数:23
相关论文
共 24 条
[1]   Sharp two-weight inequalities for singular integrals, with applications to the Hilbert transform and the Sarason conjecture [J].
Cruz-Uribe, D. ;
Martell, J. M. ;
Perez, C. .
ADVANCES IN MATHEMATICS, 2007, 216 (02) :647-676
[2]  
Cruz-Uribe D, 1999, MATH RES LETT, V6, P417
[3]  
Cruz-Uribe D, 2000, INDIANA U MATH J, V49, P697
[4]  
Cruz-Uribe D., ARXIV11120676V4MATHA
[5]  
Cruz-Uribe D, 2002, ANN SCUOLA NORM-SCI, V1, P821
[6]   Sharp weighted estimates for classical operators [J].
Cruz-Uribe, David ;
Maria Martell, Jose ;
Perez, Carlos .
ADVANCES IN MATHEMATICS, 2012, 229 (01) :408-441
[7]  
Cruz-Uribe DV, 2011, OPER THEORY ADV APPL, V215, P3, DOI 10.1007/978-3-0348-0072-3
[9]   THE UNCERTAINTY PRINCIPLE [J].
FEFFERMAN, CL .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 9 (02) :129-206
[10]  
Hytonen T., J REINE ANG IN PRESS