Thermomechanical Polymer Binder Reactivity with Positive Active Materials for Li Metal Polymer and Li-Ion Batteries: An XPS and XPS Imaging Study

被引:51
作者
Grissa, Rabeb [1 ]
Abramova, Alla [1 ,2 ]
Tambio, Sacris-Jeru [1 ]
Lecuyer, Margaud [2 ]
Deschamps, Marc [2 ]
Fernandez, Vincent [1 ]
Greneche, Jean-Marc [3 ]
Guyomard, Dominique [1 ]
Lestriez, Bernard [1 ]
Moreau, Philippe [1 ]
机构
[1] Univ Nantes, CNRS, Inst Mat Jean Rouxel IMN, 2 Rue Houssiniere,BP 32229, F-44322 Nantes 3, France
[2] Blue Solut, F-29500 Quimper, France
[3] Univ Maine, CNRS, UMR 6283, IMMM, Ave Olivier Messiaen, F-72085 Le Mans, France
关键词
PVdF; PEO; XPS; XPS imaging; LFP; NMC; RAY PHOTOELECTRON-SPECTROSCOPY; POLY(VINYLIDENE FLUORIDE); HIGH-VOLTAGE; ELECTROCHEMICAL PROPERTIES; MECHANICAL STRENGTH; TRIBLOCK-COPOLYMERS; CHEMICAL-PROPERTIES; SURFACE-MORPHOLOGY; GRAPHITE PARTICLES; GEL ELECTROLYTE;
D O I
10.1021/acsami.9b01761
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The lithium and lithium-ion battery electrode chemical stability in the pristine state has rarely been considered as a function of the binder choice and the electrode processing. In this work, X-ray photoelectron spectroscopy (XPS) and XPS imaging analyses associated with complementary Mossbauer spectroscopy are used in order to study the chemical stability of two pristine positive electrodes: (i) an extruded LiFePO4-based electrode formulated with different polymer matrices [polyethylene oxide and a polyvinylidene difluoride (PVdF)] and processed at different temperatures (90 and 130 degrees C, respectively) and (ii) a Li[Ni0.5Mn0.3Co0.2]O-2 (NMC)-based electrode processed by tape-casting, followed by a mild or heavy calendering treatment. These analyses have allowed the identification of reactivity mechanisms at the interface of the active material and the polymer in the case of PVdF-based electrodes.
引用
收藏
页码:18368 / 18376
页数:9
相关论文
共 68 条
[1]  
Armstrong R D., 1996, SYNTHESIS LICH 502CF, V143, P1297
[2]   Composite cathode structure/property relationships [J].
Babinec, S. ;
Tang, H. ;
Talik, A. ;
Hughes, S. ;
Meyers, G. .
JOURNAL OF POWER SOURCES, 2007, 174 (02) :508-514
[3]   Developments in numerical treatments for large data sets of XPS images [J].
Bechu, Solene ;
Richard-Plouet, Mireille ;
Fernandez, Vincent ;
Walton, John ;
Fairley, Neal .
SURFACE AND INTERFACE ANALYSIS, 2016, 48 (05) :301-309
[4]   Poly(benzyl methacrylate)-poly[(oligo ethylene glycol) methyl ether methacrylate] triblock-copolymers as solid electrolyte for lithium batteries [J].
Bergfelt, Andreas ;
Rubatat, Laurent ;
Brandell, Daniel ;
Bowden, Tim .
SOLID STATE IONICS, 2018, 321 :55-61
[5]   Spatially resolved X-ray photoelectron spectroscopy [J].
Blomfield, CJ .
JOURNAL OF ELECTRON SPECTROSCOPY AND RELATED PHENOMENA, 2005, 143 (2-3) :241-249
[6]  
Bouchet R, 2015, TECHNIQUES INGENIEUR, V33, P1
[7]  
Bouchet R, 2013, NAT MATER, V12, P452, DOI [10.1038/nmat3602, 10.1038/NMAT3602]
[8]   Alternative binders for sustainable electrochemical energy storage - the transition to aqueous electrode processing and bio-derived polymers [J].
Bresser, Dominic ;
Buchholz, Daniel ;
Moretti, Arianna ;
Varzi, Alberto ;
Passerini, Stefano .
ENERGY & ENVIRONMENTAL SCIENCE, 2018, 11 (11) :3096-3127
[9]   Functional poly(vinylidene fluoride) copolymer membranes via surface-initiated thiol-ene click reactions [J].
Cai, Tao ;
Wang, Rong ;
Neoh, K. G. ;
Kang, E. T. .
POLYMER CHEMISTRY, 2011, 2 (08) :1849-1858
[10]   COMPOSITE POLYMER ELECTROLYTES [J].
CAPUANO, F ;
CROCE, F ;
SCROSATI, B .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1991, 138 (07) :1918-1922