Thermomechanical Polymer Binder Reactivity with Positive Active Materials for Li Metal Polymer and Li-Ion Batteries: An XPS and XPS Imaging Study

被引:51
作者
Grissa, Rabeb [1 ]
Abramova, Alla [1 ,2 ]
Tambio, Sacris-Jeru [1 ]
Lecuyer, Margaud [2 ]
Deschamps, Marc [2 ]
Fernandez, Vincent [1 ]
Greneche, Jean-Marc [3 ]
Guyomard, Dominique [1 ]
Lestriez, Bernard [1 ]
Moreau, Philippe [1 ]
机构
[1] Univ Nantes, CNRS, Inst Mat Jean Rouxel IMN, 2 Rue Houssiniere,BP 32229, F-44322 Nantes 3, France
[2] Blue Solut, F-29500 Quimper, France
[3] Univ Maine, CNRS, UMR 6283, IMMM, Ave Olivier Messiaen, F-72085 Le Mans, France
关键词
PVdF; PEO; XPS; XPS imaging; LFP; NMC; RAY PHOTOELECTRON-SPECTROSCOPY; POLY(VINYLIDENE FLUORIDE); HIGH-VOLTAGE; ELECTROCHEMICAL PROPERTIES; MECHANICAL STRENGTH; TRIBLOCK-COPOLYMERS; CHEMICAL-PROPERTIES; SURFACE-MORPHOLOGY; GRAPHITE PARTICLES; GEL ELECTROLYTE;
D O I
10.1021/acsami.9b01761
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The lithium and lithium-ion battery electrode chemical stability in the pristine state has rarely been considered as a function of the binder choice and the electrode processing. In this work, X-ray photoelectron spectroscopy (XPS) and XPS imaging analyses associated with complementary Mossbauer spectroscopy are used in order to study the chemical stability of two pristine positive electrodes: (i) an extruded LiFePO4-based electrode formulated with different polymer matrices [polyethylene oxide and a polyvinylidene difluoride (PVdF)] and processed at different temperatures (90 and 130 degrees C, respectively) and (ii) a Li[Ni0.5Mn0.3Co0.2]O-2 (NMC)-based electrode processed by tape-casting, followed by a mild or heavy calendering treatment. These analyses have allowed the identification of reactivity mechanisms at the interface of the active material and the polymer in the case of PVdF-based electrodes.
引用
收藏
页码:18368 / 18376
页数:9
相关论文
共 68 条
  • [1] Armstrong R D., 1996, SYNTHESIS LICH 502CF, V143, P1297
  • [2] Composite cathode structure/property relationships
    Babinec, S.
    Tang, H.
    Talik, A.
    Hughes, S.
    Meyers, G.
    [J]. JOURNAL OF POWER SOURCES, 2007, 174 (02) : 508 - 514
  • [3] Developments in numerical treatments for large data sets of XPS images
    Bechu, Solene
    Richard-Plouet, Mireille
    Fernandez, Vincent
    Walton, John
    Fairley, Neal
    [J]. SURFACE AND INTERFACE ANALYSIS, 2016, 48 (05) : 301 - 309
  • [4] Poly(benzyl methacrylate)-poly[(oligo ethylene glycol) methyl ether methacrylate] triblock-copolymers as solid electrolyte for lithium batteries
    Bergfelt, Andreas
    Rubatat, Laurent
    Brandell, Daniel
    Bowden, Tim
    [J]. SOLID STATE IONICS, 2018, 321 : 55 - 61
  • [5] Spatially resolved X-ray photoelectron spectroscopy
    Blomfield, CJ
    [J]. JOURNAL OF ELECTRON SPECTROSCOPY AND RELATED PHENOMENA, 2005, 143 (2-3) : 241 - 249
  • [6] Bouchet R, 2015, TECHNIQUES INGENIEUR, V33, P1
  • [7] Bouchet R, 2013, NAT MATER, V12, P452, DOI [10.1038/nmat3602, 10.1038/NMAT3602]
  • [8] Alternative binders for sustainable electrochemical energy storage - the transition to aqueous electrode processing and bio-derived polymers
    Bresser, Dominic
    Buchholz, Daniel
    Moretti, Arianna
    Varzi, Alberto
    Passerini, Stefano
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2018, 11 (11) : 3096 - 3127
  • [9] Functional poly(vinylidene fluoride) copolymer membranes via surface-initiated thiol-ene click reactions
    Cai, Tao
    Wang, Rong
    Neoh, K. G.
    Kang, E. T.
    [J]. POLYMER CHEMISTRY, 2011, 2 (08) : 1849 - 1858
  • [10] COMPOSITE POLYMER ELECTROLYTES
    CAPUANO, F
    CROCE, F
    SCROSATI, B
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1991, 138 (07) : 1918 - 1922