Music Recommendation Based on Multidimensional Description and Similarity Measures

被引:5
作者
Kostek, Bozena [1 ]
Kaczmarek, Andrzej [2 ]
机构
[1] Gdansk Univ Technol, Audio Acoust Lab, Fac Elect Telecomm & Informat, PL-80233 Gdansk, Poland
[2] Gdansk Univ Technol, Multimedia Syst Dept, Fac Elect Telecomm & Informat, PL-80233 Gdansk, Poland
关键词
Music Information Retrieval (MIR); Music genre classification; Music parametrization; Query systems; Intelligent decision systems; GENRE CLASSIFICATION; INSTRUMENT; INFORMATION; SOUNDS;
D O I
10.3233/FI-2013-912
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
This study aims to create an algorithm for assessing the degree to which songs belong to genres defined a priori. Such an algorithm is not aimed at providing unambiguous classification-labelling of songs, but at producing a multidimensional description encompassing all of the defined genres. The algorithm utilized data derived from the most relevant examples belonging to a particular genre of music. For this condition to be met, data must be appropriately selected. It is based on the fuzzy logic principles, which will be addressed further. The paper describes all steps of experiments along with examples of analyses and results obtained.
引用
收藏
页码:325 / 340
页数:16
相关论文
共 36 条
  • [1] [Anonymous], 2005, MPEG 7 AUDIO AUDIO C
  • [2] Representing musical genre: A state of the art
    Aucouturier, JJ
    Pachet, F
    [J]. JOURNAL OF NEW MUSIC RESEARCH, 2003, 32 (01) : 83 - 93
  • [3] Bazan JG, 2005, LECT NOTES COMPUT SC, V3400, P37
  • [4] Perceptually Correlated Parameters of Musical Instrument Tones
    Beauchamp, James W.
    [J]. ARCHIVES OF ACOUSTICS, 2011, 36 (02) : 225 - 238
  • [5] Benetos E., 2008, P EUR SIGN PROC C LA
  • [6] Aggregate features and ADABOOST for music classification
    Bergstra, James
    Casagrande, Norman
    Erhan, Dumitru
    Eck, Douglas
    Kegl, Balazs
    [J]. MACHINE LEARNING, 2006, 65 (2-3) : 473 - 484
  • [7] Brun M, 2005, EURASIP BOOK SERIES
  • [8] Cluster merging and splitting in hierarchical clustering algorithms
    Ding, C
    He, XF
    [J]. 2002 IEEE INTERNATIONAL CONFERENCE ON DATA MINING, PROCEEDINGS, 2002, : 139 - 146
  • [9] Automatic Music Summarization. A "Thumbnail" Approach
    Glaczynski, Jakub
    Lukasik, Ewa
    [J]. ARCHIVES OF ACOUSTICS, 2011, 36 (02) : 297 - 309
  • [10] Musical genre classification using nonnegative matrix factorization-based features
    Holzapfel, Andre
    Stylianou, Yannis
    [J]. IEEE TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2008, 16 (02): : 424 - 434