Improving the gate fidelity of capacitively coupled spin qubits

被引:247
作者
Wang, Xin [1 ,3 ]
Barnes, Edwin [1 ,2 ]
Das Sarma, S. [1 ,2 ]
机构
[1] Univ Maryland, Dept Phys, Condensed Matter Theory Ctr, College Pk, MD 20742 USA
[2] Univ Maryland, Joint Quantum Inst, College Pk, MD 20742 USA
[3] City Univ Hong Kong, Dept Phys & Mat Sci, Hong Kong, Hong Kong, Peoples R China
关键词
Computer architecture - Cluster computing - Logic gates;
D O I
10.1038/npjqi.2015.3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Capacitively coupled semiconductor spin qubits hold promise as the building blocks of a scalable quantum computing architecture with long-range coupling between distant qubits. However, the two-qubit gate fidelities achieved in experiments to date have been severely limited by decoherence originating from charge noise and hyperfine interactions with nuclear spins, and are currently unacceptably low for any conceivable multi-qubit gate operations. Here, we present control protocols that implement two-qubit entangling gates while substantially suppressing errors due to both types of noise. These protocols are obtained by making simple modifications to control sequences already used in the laboratory and should thus be easy enough for immediate experimental realisation. Together with existing control protocols for robust single-qubit gates, our results constitute an important step toward scalable quantum computation using spin qubits in semiconductor platforms.
引用
收藏
页数:7
相关论文
共 40 条
[11]   Implementation of the Deutsch-Jozsa algorithm on an ion-trap quantum computer [J].
Gulde, S ;
Riebe, M ;
Lancaster, GPT ;
Becher, C ;
Eschner, J ;
Häffner, H ;
Schmidt-Kaler, F ;
Chuang, IL ;
Blatt, R .
NATURE, 2003, 421 (6918) :48-50
[12]   Triplet-singlet spin relaxation via nuclei in a double quantum dot [J].
Johnson, AC ;
Petta, JR ;
Taylor, JM ;
Yacoby, A ;
Lukin, MD ;
Marcus, CM ;
Hanson, MP ;
Gossard, AC .
NATURE, 2005, 435 (7044) :925-928
[13]   Robust Ising gates for practical quantum computation [J].
Jones, JA .
PHYSICAL REVIEW A, 2003, 67 (01) :3
[14]   Noise-Resistant Control for a Spin Qubit Array [J].
Kestner, J. P. ;
Wang, Xin ;
Bishop, Lev S. ;
Barnes, Edwin ;
Das Sarma, S. .
PHYSICAL REVIEW LETTERS, 2013, 110 (14)
[15]   Quantum control and process tomography of a semiconductor quantum dot hybrid qubit [J].
Kim, Dohun ;
Shi, Zhan ;
Simmons, C. B. ;
Ward, D. R. ;
Prance, J. R. ;
Koh, Teck Seng ;
Gamble, John King ;
Savage, D. E. ;
Lagally, M. G. ;
Friesen, Mark ;
Coppersmith, S. N. ;
Eriksson, Mark A. .
NATURE, 2014, 511 (7507) :70-74
[16]   Exchange-based CNOT gates for singlet-triplet qubits with spin-orbit interaction [J].
Klinovaja, Jelena ;
Stepanenko, Dimitrije ;
Halperin, Bertrand I. ;
Loss, Daniel .
PHYSICAL REVIEW B, 2012, 86 (08)
[17]   Conditional rotation of two strongly coupled semiconductor charge qubits [J].
Li, Hai-Ou ;
Cao, Gang ;
Yu, Guo-Dong ;
Xiao, Ming ;
Guo, Guang-Can ;
Jiang, Hong-Wen ;
Guo, Guo-Ping .
NATURE COMMUNICATIONS, 2015, 6
[18]   Nonlocal Properties of Two-Qubit Gates and Mixed States, and the Optimization of Quantum Computations [J].
Makhlin, Yuriy .
QUANTUM INFORMATION PROCESSING, 2002, 1 (04) :243-252
[19]   Coherent singlet-triplet oscillations in a silicon-based double quantum dot [J].
Maune, B. M. ;
Borselli, M. G. ;
Huang, B. ;
Ladd, T. D. ;
Deelman, P. W. ;
Holabird, K. S. ;
Kiselev, A. A. ;
Alvarado-Rodriguez, I. ;
Ross, R. S. ;
Schmitz, A. E. ;
Sokolich, M. ;
Watson, C. A. ;
Gyure, M. F. ;
Hunter, A. T. .
NATURE, 2012, 481 (7381) :344-347
[20]   Quantum-Dot-Based Resonant Exchange Qubit [J].
Medford, J. ;
Beil, J. ;
Taylor, J. M. ;
Rashba, E. I. ;
Lu, H. ;
Gossard, A. C. ;
Marcus, C. M. .
PHYSICAL REVIEW LETTERS, 2013, 111 (05)