Optimal functions for a periodic uncertainty principle and multiresolution analysis

被引:26
作者
Prestin, J [1 ]
Quak, E
机构
[1] GSF Forschungszentrum Umwelt & Gesundheit, Inst Biomath & Biometry, D-85764 Neuherberg, Germany
[2] SINTEF, Appl Math, N-0314 Oslo, Norway
关键词
D O I
10.1017/S0013091500020216
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, it is shown that certain Theta functions are asymptotically optimal for the periodic time frequency uncertainty principle described by Breitenberger in [3]. These extremal functions give rise to a periodic multiresolution analysis where the corresponding wavelets also show similar localization properties. 1991 Mathematics subject classification: Primary 42A16, Secondary 26D05, 26D10, 26D15.
引用
收藏
页码:225 / 242
页数:18
相关论文
共 17 条
[1]  
[Anonymous], J FOURIER ANAL APPL
[2]  
[Anonymous], 1968, ASYMPTOTISCHE DARSTE
[3]  
Benedetto J.J., 1992, Operator Theory: Advances and Applications, V58, P1
[4]   UNCERTAINTY MEASURES AND UNCERTAINTY RELATIONS FOR ANGLE OBSERVABLES [J].
BREITENBERGER, E .
FOUNDATIONS OF PHYSICS, 1985, 15 (03) :353-364
[5]  
CHUI CK, 1994, WAVELETS IMAGES SURF, P121
[6]  
CHUI CK, 1996, 323 CAT TEX A M U
[7]   TIME FREQUENCY-DISTRIBUTIONS - A REVIEW [J].
COHEN, L .
PROCEEDINGS OF THE IEEE, 1989, 77 (07) :941-981
[8]  
DAUBECHIES I, 1992, CBMS NSF SERIES APPL
[9]   PERIODIC ORTHOGONAL SPLINES AND WAVELETS [J].
KOH, YW ;
LEE, SL ;
TAN, HH .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 1995, 2 (03) :201-218
[10]   Wavelets associated with periodic basis functions [J].
Narcowich, FJ ;
Ward, JD .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 1996, 3 (01) :40-56