A generalized construction of Calabi-Yau models and mirror symmetry

被引:21
|
作者
Berglund, Per [1 ,2 ]
Hubsch, Tristan [3 ]
机构
[1] Univ New Hampshire, Dept Phys, Durham, NH 03824 USA
[2] CERN, Theoret Phys Dept, CH-1211 Geneva, Switzerland
[3] Howard Univ, Dept Phys & Astron, Washington, DC 20059 USA
来源
SCIPOST PHYSICS | 2018年 / 4卷 / 02期
基金
美国国家科学基金会;
关键词
LANDAU-GINZBURG THEORY; STRING THEORY; TORIC MANIFOLDS; TOPOLOGY CHANGE; MULTI-FANS; VARIETIES;
D O I
10.21468/SciPostPhys.4.2.009
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We extend the construction of Calabi-Yau manifolds to hypersurfaces in non-Fano toric varieties, requiring the use of certain Laurent defining polynomials, and explore the phases of the corresponding gauged linear sigma models. The associated non-reflexive and non-convex polytopes provide a generalization of Batyrev's original work, allowing us to construct novel pairs of mirror models. We showcase our proposal for this generalization by examining Calabi-Yau hypersurfaces in Hirzebruch n-folds, focusing on n=3,4 sequences, and outline the more general class of so-defined geometries.
引用
收藏
页数:30
相关论文
共 50 条
  • [1] Mirror symmetry, Tyurin degenerations and fibrations on Calabi-Yau manifolds
    Doran, Charles F.
    Harder, Andrew
    Thompson, Alan
    STRING-MATH 2015, 2017, 96 : 101 - 139
  • [2] Mirror symmetry for quasi-smooth Calabi-Yau hypersurfaces in weighted projective spaces
    Batyrev, Victor
    Schaller, Karin
    JOURNAL OF GEOMETRY AND PHYSICS, 2021, 164
  • [3] Enumerative meaning of mirror maps for toric Calabi-Yau manifolds
    Chan, Kwokwai
    Lau, Siu-Cheong
    Tseng, Hsian-Hua
    ADVANCES IN MATHEMATICS, 2013, 244 : 605 - 625
  • [4] EXPLICIT EQUATIONS FOR MIRROR FAMILIES TO LOG CALABI-YAU SURFACES
    Barrott, Lawrence Jack
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2020, 57 (01) : 139 - 165
  • [5] Stabilization of a twisted modulus on a mirror of rigid Calabi-Yau manifold
    Ishiguro, Keiya
    Kai, Takafumi
    Otsuka, Hajime
    JOURNAL OF HIGH ENERGY PHYSICS, 2024, (10):
  • [6] Semistable degenerations of Calabi-Yau manifolds and mirror P=W conjectures
    Lee, Sukjoo
    FORUM OF MATHEMATICS SIGMA, 2024, 12
  • [7] The E3/Z3 orbifold, mirror symmetry, and Hodge structures of Calabi-Yau type
    Cacciatori, Sergio Luigi
    Filippini, Sara Angela
    JOURNAL OF GEOMETRY AND PHYSICS, 2019, 138 : 70 - 89
  • [8] Abelian Calabi-Yau threefolds: Neron models and rational points
    Bogomolov, Fedor
    Halle, Lars Halvard
    Pazuki, Fabien
    Tanimoto, Sho
    MATHEMATICAL RESEARCH LETTERS, 2018, 25 (02) : 367 - 392
  • [9] Non-invertible symmetry in Calabi-Yau conformal field theories
    Cordova, Clay
    Rizi, Giovanni
    JOURNAL OF HIGH ENERGY PHYSICS, 2025, (01):
  • [10] Mirror pairs of Calabi-Yau threefolds from mirror pairs of quasi-Fano threefolds
    Lee, Nam-Hoon
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2020, 141 : 195 - 219