Domination in bipartite graphs

被引:4
作者
Harant, Jochen [1 ]
Rautenbach, Dieter [1 ]
机构
[1] Tech Univ Ilmenau, Inst Math, D-98684 Ilmenau, Germany
关键词
Domination number; Cycle length; Bipartite; Probabilistic method; NUMBER;
D O I
10.1016/j.disc.2007.12.051
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that the domination 3 number of a graph of order n and minimum degree at least 2 that does not contain cycles of length 4, 5, 7, 10 or 13 is at most 3/8n. Furthermore, we derive upper bounds on the domination number of bipartite graphs of given minimum degree. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:113 / 122
页数:10
相关论文
共 18 条
[1]  
Alon Noga, 1992, The Probabilistic Method
[2]  
AMAUTOV VI, 1974, PRIKL MAT PROGRAMM, V11, P3
[3]  
Blank M.M., 1973, PRIKL MAT PROGRAMMIR, P3
[4]   BOUNDS ON THE DOMINATION NUMBER OF A GRAPH [J].
BRIGHAM, RC ;
DUTTON, RD .
QUARTERLY JOURNAL OF MATHEMATICS, 1990, 41 (163) :269-275
[5]  
CARO Y, 1985, ARS COMBINATORIA, V20, P167
[6]  
Caro Y., 1990, INT J MATH MATH SCI, V13, P205, DOI [10.1155/S016117129000031X, DOI 10.1155/S016117129000031X, 10.1155S016117129000031X////]
[7]  
Gerlach T., 2002, Discussiones Mathematicae Graph Theory, V22, P229, DOI 10.7151/dmgt.1171
[8]  
HARANT J, 2001, ANN COMB, V5, P175, DOI DOI 10.1007/PL00001298
[9]  
Haynes T. W., 1998, DOMINATION GRAPHS AD
[10]   Domination in a graph with a 2-factor [J].
Kawarabayashi, K ;
Plummer, MD ;
Saito, A .
JOURNAL OF GRAPH THEORY, 2006, 52 (01) :1-6