Random geometric problems on [0,1]2

被引:0
作者
Díaz, J [1 ]
Petit, J [1 ]
Serna, M [1 ]
机构
[1] Univ Politecn Cataluna, Dept Llenguatges & Sistemes, ES-08034 Barcelona, Spain
来源
RANDOMIZATION AND APPROXIMATION TECHNIQUES IN COMPUTER SCIENCE | 1998年 / 1518卷
关键词
D O I
暂无
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In this paper we survey the work done for graphs on random geometric models. We present some heuristics for the problem of the Minimal linear arrangement on [0, 1](2) and we conclude with a collection of open problems.
引用
收藏
页码:294 / 306
页数:13
相关论文
共 50 条
[21]   Random perturbations of non-singular transformations on [0,1] [J].
Iwata, Yukiko ;
Ogihara, Tomohiro .
HOKKAIDO MATHEMATICAL JOURNAL, 2013, 42 (02) :269-291
[22]   ON BASES IN C([0,1]) AND L-1([0,1]) [J].
Foias, Ciprian ;
Singer, Ivan .
REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES, 2013, 58 (03) :215-244
[23]   On the universal function for the class LP[0,1], p ∈ (0,1) [J].
Grigoryan, M. G. ;
Sargsyan, A. A. .
JOURNAL OF FUNCTIONAL ANALYSIS, 2016, 270 (08) :3111-3133
[24]   Continuous [0,1]-lattices and injective [0,1]-approach spaces [J].
Yu, Junche ;
Zhang, Dexue .
Fuzzy Sets and Systems, 2022, 444 :49-78
[25]   Continuous [0,1]-lattices and injective [0,1]-approach spaces [J].
Yu, Junche ;
Zhang, Dexue .
FUZZY SETS AND SYSTEMS, 2022, 444 :49-78
[26]   Interdicting Structured Combinatorial Optimization Problems with {0,1}-Objectives [J].
Chestnut, Stephen R. ;
Zenklusen, Rico .
MATHEMATICS OF OPERATIONS RESEARCH, 2017, 42 (01) :144-166
[27]   Computing and Selecting ε-Efficient Solutions of {0,1}-Knapsack Problems [J].
Tantar, Emilia ;
Schuetze, Oliver ;
Figueira, Jose Rui ;
Coello, Carlos A. Coello ;
Talbi, El-Ghazali .
MULTIPLE CRITERIA DECISION MAKING FOR SUSTAINABLE ENERGY AND TRANSPORTATION SYSTEMS: PROCEEDINGS OF THE 19TH INTERNATIONAL CONFERENCE ON MULTIPLE CRITERIA DECISION MAKING, 2010, 634 :378-388
[28]   ON COREFLECTIVE HULLS IN [0,1]-TOP AND s[0,1]-TOP [J].
Singh, Veena ;
Srivastava, Arun K. .
QUAESTIONES MATHEMATICAE, 2013, 36 (02) :167-179
[29]   The full Muntz theorem in C[0,1] and L(1)[0,1] [J].
Borwein, P ;
Erdelyi, T .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1996, 54 :102-110
[30]   ISOMETRICAPPROXIMATIONFROM2-DIMBANACHSPACEINTOL1[0,1] [J].
张庆洪 .
ActaMathematicaScientia, 1994, (S1) :46-52