A Calcium-Based Simple Model of Multiple Spike Interactions in Spike-Timing-Dependent Plasticity

被引:3
|
作者
Uramoto, Takumi [1 ]
Torikai, Hiroyuki [1 ]
机构
[1] Osaka Univ, Grad Sch Engn Sci, Toyonaka, Osaka 5608531, Japan
关键词
LONG-TERM POTENTIATION; SYNAPTIC PLASTICITY; VISUAL-CORTEX; HIPPOCAMPUS; DEPRESSION; NEURONS; REQUIREMENT; SENSITIVITY; INTEGRATION; STDP;
D O I
10.1162/NECO_a_00462
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Spike-timing-dependent plasticity (STDP) is a form of synaptic modification that depends on the relative timings of presynaptic and postsynaptic spikes. In this letter, we proposed a calcium-based simple STDP model, described by an ordinary differential equation having only three state variables: one represents the density of intracellular calcium, one represents a fraction of open state NMDARs, and one represents the synaptic weight. We shown that in spite of its simplicity, the model can reproduce the properties of the plasticity that have been experimentally measured in various brain areas (e.g., layer 2/3 and 5 visual cortical slices, hippocampal cultures, and layer 2/3 somatosensory cortical slices) with respect to various patterns of presynaptic and postsynaptic spikes. In addition, comparisons with other STDP models are made, and the significance and advantages of the proposed model are discussed.
引用
收藏
页码:1853 / 1869
页数:17
相关论文
共 50 条
  • [41] Adrenergic Gating of Hebbian Spike-Timing-Dependent Plasticity in Cortical Interneurons
    Huang, Shiyong
    Huganir, Richard L.
    Kirkwood, Alfredo
    JOURNAL OF NEUROSCIENCE, 2013, 33 (32) : 13171 - 13178
  • [42] Effects of Firing Variability on Network Structures with Spike-Timing-Dependent Plasticity
    Min, Bin
    Zhou, Douglas
    Cai, David
    FRONTIERS IN COMPUTATIONAL NEUROSCIENCE, 2018, 12
  • [43] Environmental enrichment shapes striatal spike-timing-dependent plasticity in vivo
    Morera-Herreras, Teresa
    Gioanni, Yves
    Perez, Sylvie
    Vignoud, Gaetan
    Venance, Laurent
    SCIENTIFIC REPORTS, 2019, 9 (1)
  • [44] Non-Hebbian spike-timing-dependent plasticity in cerebellar circuits
    Piochon, Claire
    Kruskal, Peter
    MacLean, Jason
    Hansel, Christian
    FRONTIERS IN NEURAL CIRCUITS, 2013, 6
  • [45] Interactions between spike-timing-dependent plasticity and phase response curve lead to wireless clustering
    Cateau, Hideyuki
    Kitano, Katsunori
    Fukai, Tomoki
    NEURAL INFORMATION PROCESSING, PART I, 2008, 4984 : 142 - +
  • [46] Modeling triplet spike-timing-dependent plasticity using memristive devices
    Aghnout, Soraya
    Karimi, Gholamreza
    Azghadi, Mostafa Rahimi
    JOURNAL OF COMPUTATIONAL ELECTRONICS, 2017, 16 (02) : 401 - 410
  • [47] Memory-Efficient Synaptic Connectivity for Spike-Timing-Dependent Plasticity
    Pedroni, Bruno U.
    Joshi, Siddharth
    Deissl, Stephen R.
    Sheik, Sadique
    Detorakis, Georgios
    Paul, Somnath
    Augustine, Charles
    Neftci, Emre O.
    Cauwenberghs, Gert
    FRONTIERS IN NEUROSCIENCE, 2019, 13
  • [48] Unsupervised learning of digit recognition using spike-timing-dependent plasticity
    Diehl, Peter U.
    Cook, Matthew
    FRONTIERS IN COMPUTATIONAL NEUROSCIENCE, 2015, 9
  • [49] Neuromodulation of Spike-Timing-Dependent Plasticity: Past, Present, and Future
    Brzosko, Zuzanna
    Mierau, Susanna B.
    Pausen, Ole
    NEURON, 2019, 103 (04) : 563 - 581
  • [50] Spike-Timing-Dependent Synaptic Plasticity and Synaptic Democracy in Dendrites
    Gidon, Albert
    Segev, Idan
    JOURNAL OF NEUROPHYSIOLOGY, 2009, 101 (06) : 3226 - 3234