A Calcium-Based Simple Model of Multiple Spike Interactions in Spike-Timing-Dependent Plasticity

被引:3
|
作者
Uramoto, Takumi [1 ]
Torikai, Hiroyuki [1 ]
机构
[1] Osaka Univ, Grad Sch Engn Sci, Toyonaka, Osaka 5608531, Japan
关键词
LONG-TERM POTENTIATION; SYNAPTIC PLASTICITY; VISUAL-CORTEX; HIPPOCAMPUS; DEPRESSION; NEURONS; REQUIREMENT; SENSITIVITY; INTEGRATION; STDP;
D O I
10.1162/NECO_a_00462
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Spike-timing-dependent plasticity (STDP) is a form of synaptic modification that depends on the relative timings of presynaptic and postsynaptic spikes. In this letter, we proposed a calcium-based simple STDP model, described by an ordinary differential equation having only three state variables: one represents the density of intracellular calcium, one represents a fraction of open state NMDARs, and one represents the synaptic weight. We shown that in spite of its simplicity, the model can reproduce the properties of the plasticity that have been experimentally measured in various brain areas (e.g., layer 2/3 and 5 visual cortical slices, hippocampal cultures, and layer 2/3 somatosensory cortical slices) with respect to various patterns of presynaptic and postsynaptic spikes. In addition, comparisons with other STDP models are made, and the significance and advantages of the proposed model are discussed.
引用
收藏
页码:1853 / 1869
页数:17
相关论文
共 50 条
  • [41] Biophysical and phenomenological models of multiple spike interactions in spike-timing dependent plasticity
    Badoual, Mathilde
    Zou, Quan
    Davison, Andrew P.
    Rudolph, Michael
    Bal, Thierry
    Fregnac, Yves
    Destexhe, Alain
    INTERNATIONAL JOURNAL OF NEURAL SYSTEMS, 2006, 16 (02) : 79 - 97
  • [42] Modeling the interplay between structural plasticity and spike-timing-dependent plasticity
    Richard M George
    Peter U Diehl
    Matthew Cook
    Christian Mayr
    Giacomo Indiveri
    BMC Neuroscience, 16 (Suppl 1)
  • [43] Synaptic Properties of Geopolymer Memristors: Synaptic Plasticity, Spike-Rate-Dependent Plasticity, and Spike-Timing-Dependent Plasticity
    Shakib, Mahmudul Alam
    Gao, Zhaolin
    Lamuta, Caterina
    ACS APPLIED ELECTRONIC MATERIALS, 2023, 5 (09) : 4875 - 4884
  • [44] Spike-Timing-Dependent Construction
    Lightheart, Toby
    Grainger, Steven
    Lu, Tien-Fu
    NEURAL COMPUTATION, 2013, 25 (10) : 2611 - 2645
  • [45] Spike-timing-dependent plasticity model for low-frequency pulse waveform
    Ohara, Masaya
    Kaneko, Minami
    Uchikoba, Fumio
    Saito, Ken
    ARTIFICIAL LIFE AND ROBOTICS, 2019, 24 (04) : 452 - 459
  • [46] Effect of Spike-Timing-Dependent Plasticity on Stochastic Spike Synchronization in an Excitatory Neuronal Population
    Kim, Sang-Yoon
    Lim, Woochang
    ADVANCES IN COGNITIVE NEURODYNAMICS (VI), 2018, : 335 - 341
  • [47] Synaptic and temporal ensemble interpretation of spike-timing-dependent plasticity
    Appleby, PA
    Elliott, T
    NEURAL COMPUTATION, 2005, 17 (11) : 2316 - 2336
  • [48] Spike-timing-dependent synaptic plasticity depends on dendritic location
    Robert C. Froemke
    Mu-ming Poo
    Yang Dan
    Nature, 2005, 434 : 221 - 225
  • [49] Spike-Timing-Dependent Synaptic Plasticity and Synaptic Democracy in Dendrites
    Gidon, Albert
    Segev, Idan
    JOURNAL OF NEUROPHYSIOLOGY, 2009, 101 (06) : 3226 - 3234
  • [50] Inhibitory and Excitatory Spike-Timing-Dependent Plasticity in the Auditory Cortex
    D'amour, James A.
    Froemke, Robert C.
    NEURON, 2015, 86 (02) : 514 - 528