A Calcium-Based Simple Model of Multiple Spike Interactions in Spike-Timing-Dependent Plasticity

被引:3
|
作者
Uramoto, Takumi [1 ]
Torikai, Hiroyuki [1 ]
机构
[1] Osaka Univ, Grad Sch Engn Sci, Toyonaka, Osaka 5608531, Japan
关键词
LONG-TERM POTENTIATION; SYNAPTIC PLASTICITY; VISUAL-CORTEX; HIPPOCAMPUS; DEPRESSION; NEURONS; REQUIREMENT; SENSITIVITY; INTEGRATION; STDP;
D O I
10.1162/NECO_a_00462
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Spike-timing-dependent plasticity (STDP) is a form of synaptic modification that depends on the relative timings of presynaptic and postsynaptic spikes. In this letter, we proposed a calcium-based simple STDP model, described by an ordinary differential equation having only three state variables: one represents the density of intracellular calcium, one represents a fraction of open state NMDARs, and one represents the synaptic weight. We shown that in spite of its simplicity, the model can reproduce the properties of the plasticity that have been experimentally measured in various brain areas (e.g., layer 2/3 and 5 visual cortical slices, hippocampal cultures, and layer 2/3 somatosensory cortical slices) with respect to various patterns of presynaptic and postsynaptic spikes. In addition, comparisons with other STDP models are made, and the significance and advantages of the proposed model are discussed.
引用
收藏
页码:1853 / 1869
页数:17
相关论文
共 50 条
  • [1] A calcium-based simplified model for a large diversity of spike-timing dependent plasticity
    Uramoto, Takumi
    Torikai, Hiroyuki
    6TH INTERNATIONAL CONFERENCE ON SOFT COMPUTING AND INTELLIGENT SYSTEMS, AND THE 13TH INTERNATIONAL SYMPOSIUM ON ADVANCED INTELLIGENT SYSTEMS, 2012, : 1447 - 1450
  • [2] Memory Retention and Spike-Timing-Dependent Plasticity
    Billings, Guy
    van Rossum, Mark C. W.
    JOURNAL OF NEUROPHYSIOLOGY, 2009, 101 (06) : 2775 - 2788
  • [3] Calcium messenger heterogeneity: a possible signal for spike-timing-dependent plasticity
    Mihalas, Stefan
    FRONTIERS IN COMPUTATIONAL NEUROSCIENCE, 2011, 4
  • [4] Spike-timing-dependent plasticity rewards synchrony rather than causality
    Anisimova, Margarita
    van Bommel, Bas
    Wang, Rui
    Mikhaylova, Marina
    Wiegert, Joern Simon
    Oertner, Thomas G.
    Gee, Christine E.
    CEREBRAL CORTEX, 2022, : 23 - 34
  • [5] Synaptic Properties of Geopolymer Memristors: Synaptic Plasticity, Spike-Rate-Dependent Plasticity, and Spike-Timing-Dependent Plasticity
    Shakib, Mahmudul Alam
    Gao, Zhaolin
    Lamuta, Caterina
    ACS APPLIED ELECTRONIC MATERIALS, 2023, 5 (09) : 4875 - 4884
  • [6] A Computational Model of Working Memory Based on Spike-Timing-Dependent Plasticity
    Huang, Qiu-Sheng
    Wei, Hui
    FRONTIERS IN COMPUTATIONAL NEUROSCIENCE, 2021, 15
  • [7] Spike-timing-dependent BDNF secretion and synaptic plasticity
    Lu, Hui
    Park, Hyungju
    Poo, Mu-Ming
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2014, 369 (1633)
  • [8] A spike-timing-dependent plasticity rule for dendritic spines
    Tazerart, Sabrina
    Mitchell, Diana E.
    Miranda-Rottmann, Soledad
    Araya, Roberto
    NATURE COMMUNICATIONS, 2020, 11 (01)
  • [9] Spectral Analysis of Input Spike Trains by Spike-Timing-Dependent Plasticity
    Gilson, Matthieu
    Fukai, Tomoki
    Burkitt, Anthony N.
    PLOS COMPUTATIONAL BIOLOGY, 2012, 8 (07)
  • [10] Spike timing-dependent plasticity and memory
    Debanne, Dominique
    Inglebert, Yanis
    CURRENT OPINION IN NEUROBIOLOGY, 2023, 80