Energy consumption in telecommunication networks keeps growing rapidly, mainly due to emergence of new Cloud Computing (CC) services that need to be supported by large data centers that consume a huge amount of energy and, in turn, cause the emission of enormous quantity of CO2. Given the decreasing availability of fossil fuels and the raising concern about global warming, research is now focusing on novel "low-carbon" telecom solutions. E.g., based on today telecom technologies, data centers can be located near renewable energy plants and data can then be effectively transferred to these locations via reconfigurable optical networks, based on the principle that data can be moved more efficiently than electricity. This paper focuses on how to dynamically route on-demand optical circuits that are established to transfer energy-intensive data processing towards data centers powered with renewable energy. Our main contribution consists in devising two routing algorithms for connections supporting CC services, aimed at minimizing the CO2 emissions of data centers by following the current availability of renewable energy (Sun and Wind). The trade-off with energy consumption for the transport equipments is also considered. The results show that relevant reductions, up to about 30% in CO2 emissions can be achieved using our approaches compared to baseline shortest-path-based routing strategies, paying off only a marginal increase in terms of network blocking probability.