Maximally Modulated Singular Integral Operators and their Applications to Pseudodifferential Operators on Banach Function Spaces

被引:4
作者
Karlovich, Alexei Yu. [1 ,2 ]
机构
[1] Univ Nova Lisboa, CMA, P-2829516 Quinta Da Torre, Caparica, Portugal
[2] Univ Nova Lisboa, Fac Ciencias & Tecnol, P-2829516 Quinta Da Torre, Caparica, Portugal
来源
FUNCTION SPACES IN ANALYSIS | 2015年 / 645卷
关键词
Maximally modulated singular integral operator; Calderon-Zygmund operator; Hilbert transform; pseudodifferential operator with non-regular symbol; Banach function space; variable Lebesgue space; BOUNDEDNESS; LEBESGUE; COMPACTNESS;
D O I
10.1090/conm/645/1.2908
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that if the Hardy-Littlewood maximal operator is bounded on a separable Banach function space X(R-n) and on its associate space X'(R-n) and a maximally modulated Calderon-Zygmund singular integral operator T-Phi is of weak type (r, r) for all r is an element of E (1, infinity), then T-Phi extends to a bounded operator on X(R-n). This theorem implies the boundedness of the maximally modulated Hilbert transform on variable Lebesgue spaces L-p((.)) (H) under natural assumptions on the variable exponent p : R -> (1, infinity). Applications of the above result to the boundedness and compactness of pseudodifferential operators with L-infinity, V(R))-symbols on variable Lebesgue spaces L-p((.)) (H) are considered. Here the Banach algebra L-infinity(R, V(R)) consists of all bounded measurable V(R)-valued functions on R where V(R) is the Banach algebra of all functions of bounded total variation.
引用
收藏
页码:165 / +
页数:3
相关论文
共 23 条
[1]  
Bennett C., 1988, Pure and Applied Mathematics, V129
[2]   ONE-SIDED COMPACTNESS RESULTS FOR ARONSZAJN-GAGLIARDO FUNCTORS [J].
COBOS, F ;
KUHN, T ;
SCHONBEK, T .
JOURNAL OF FUNCTIONAL ANALYSIS, 1992, 106 (02) :274-313
[3]  
Cruz-Uribe D. V., 2013, APPL NUMERICAL HARMO, DOI 10.1007/978-3-0348-0548-3
[4]  
Di Plinio F., 2013, ARXIV13120833
[5]   Maximal function on Musielak-Orlicz spaces and generalized Lebesgue spaces [J].
Diening, L .
BULLETIN DES SCIENCES MATHEMATIQUES, 2005, 129 (08) :657-700
[6]   Lebesgue and Sobolev Spaces with Variable Exponents [J].
Diening, Lars ;
Harjulehto, Petteri ;
Hasto, Peter ;
Ruzicka, Michael .
LEBESGUE AND SOBOLEV SPACES WITH VARIABLE EXPONENTS, 2011, 2017 :1-+
[7]  
Dynikin E. M., 1987, CURRENT PROBLEMS MAT, V15, p[197, 303]
[8]  
FEFFERMAN C, 1972, ACTA MATH-UPPSALA, V129, P137, DOI 10.1007/BF02392215
[9]   Weighted norm inequalities for maximally modulated singular integral operators [J].
Grafakos, L ;
Martell, JM ;
Soria, F .
MATHEMATISCHE ANNALEN, 2005, 331 (02) :359-394
[10]  
Grafakos L, 2008, GRAD TEXTS MATH, V249, P1, DOI 10.1007/978-0-387-09432-8_1