Thermal Degradation of Cellulose Filaments and Nanocrystals

被引:101
作者
D'Acierno, Francesco [1 ,2 ]
Hamad, Wadood Y. [3 ]
Michal, Carl A. [1 ,2 ]
MacLachlan, Mark J. [2 ]
机构
[1] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada
[2] Univ British Columbia, Dept Chem, Vancouver, BC V6T 1Z1, Canada
[3] Bioprod Innovat Ctr Excellence, Transformat & Interfaces Grp, Vancouver, BC V6T 1Z4, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
MASS SPECTROMETRIC ANALYSIS; SOLID-STATE NMR; REINFORCING AGENT; FLAME RETARDANTS; PYROLYSIS; NANOCOMPOSITES; TEMPERATURE; HYDROLYSIS; MECHANISM; KINETICS;
D O I
10.1021/acs.biomac.0c00805
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Cellulose-derived materials, such as microcellulose and nanocellulose, are sustainable materials with a wide range of applications. Here, through a multi-analytical approach, we investigate the thermal degradation of microfibrillar cellulose filaments (CFs); acidic cellulose nanocrystals (CNC-H), containing sulfate half-ester groups on the surface; and neutralized cellulose nanocrystals (CNC-Na), where the protons are replaced by sodium ions. CFs have a simple degradation mechanism, associated with extensive dehydration, decarboxylation, and decarbonylation, and the highest thermal stability of the three (similar to 325 degrees C) despite the abundance of amorphous regions and inhomogeneous fibrous mass that make them structurally and morphologically less homogeneous than high-crystallinity CNCs. CNC-H decompose in a complex way below 200 degrees C, with large char fractions and evaporation of sulfur compounds at high temperatures, while sodium counterions in CNC-Na can improve the thermal stability up to 300 degrees C, where the pyrolysis leads to partial rehydration and formation of sodium hydroxide on the surface.
引用
收藏
页码:3374 / 3386
页数:13
相关论文
共 82 条
[1]   Surface modification of cellulose nanocrystals with cetyltrimethylammonium bromide [J].
Abitbol, Tiffany ;
Marway, Heera ;
Cranston, Emily D. .
NORDIC PULP & PAPER RESEARCH JOURNAL, 2014, 29 (01) :46-57
[2]   KINETICS OF REACTIONS INVOLVED IN PYROLYSIS OF CELLULOSE .1. THE 3-REACTION MODEL [J].
AGRAWAL, RK .
CANADIAN JOURNAL OF CHEMICAL ENGINEERING, 1988, 66 (03) :403-412
[3]   A solid-state NMR study of cellulose degradation [J].
Ali, M ;
Apperley, DC ;
Eley, CD ;
Emsley, AM ;
Harris, RK .
CELLULOSE, 1996, 3 (02) :77-90
[4]   KINETICS OF CELLULOSE PYROLYSIS MODELED BY 3 CONSECUTIVE 1ST-ORDER REACTIONS [J].
ALVES, SS ;
FIGUEIREDO, JL .
JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS, 1989, 17 (01) :37-46
[5]  
An X, 2017, J BIORESOUR BIOPROD, V2, P45
[6]   The role of solid state 13C NMR spectroscopy in studies of the nature of native celluloses [J].
Atalla, RH ;
VanderHart, DL .
SOLID STATE NUCLEAR MAGNETIC RESONANCE, 1999, 15 (01) :1-19
[7]  
Barker R. H., 1985, CELLULOSE CHEM ITS A, P423
[8]   Auto-catalyzed acidic desulfation of cellulose nanocrystals [J].
Beck, Stephanie ;
Bouchard, Jean .
NORDIC PULP & PAPER RESEARCH JOURNAL, 2014, 29 (01) :6-14
[9]   Fourier transform infrared spectroscopic study of thermal degradation of sugar cane bagasse [J].
Bilba, K ;
Ouensanga, A .
JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS, 1996, 38 :61-73
[10]   Optimization of the isolation of nanocrystals from microcrystalline cellulose by acid hydrolysis [J].
Bondeson, D ;
Mathew, A ;
Oksman, K .
CELLULOSE, 2006, 13 (02) :171-180