The matroid of supports of a linear code

被引:25
作者
Barg, A
机构
[1] EINDHOVEN UNIV TECHNOL,FAC MATH & COMP SCI,NL-5600 MB EINDHOVEN,NETHERLANDS
[2] RUSSIAN ACAD SCI,INST INFORMAT TRANSMISS PROBLEMS,MOSCOW,RUSSIA
关键词
support weight distributions; Tutte polynomial; Mac-Williams equation;
D O I
10.1007/s002000050060
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A relation between the Hamming weight enumerator of a linear code and the Tutte polynomial of the corresponding matroid has been known since long ago. It provides a simple proof of the MacWilliams equation (see D. Welsh, Matroid Theory, (1976)). In this paper we prove analogous results for the support weight distributions of a code.
引用
收藏
页码:165 / 172
页数:8
相关论文
共 11 条
[1]  
[Anonymous], 1965, MATH SCAND
[2]  
[Anonymous], BELL SYSTEM TECHNICA
[3]  
CARLITZ L, 1966, MATH SCAND, V19, P38
[4]  
DELSARTE P, 1994, P 15 S INF THEOR BEN, P9
[5]  
FISHER SD, 1966, AM MATH MONTHLY, V79, P639
[6]   ON THE COMPUTATIONAL-COMPLEXITY OF THE JONES AND TUTTE POLYNOMIALS [J].
JAEGER, F ;
VERTIGAN, DL ;
WELSH, DJA .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1990, 108 :35-53
[7]  
KLOVE T, 1992, DISCRETE MATH, V107, P311
[8]   THE EFFECTIVE LENGTH OF SUBCODES [J].
SIMONIS, J .
APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 1994, 5 (06) :371-377
[9]  
Tsfasman M. A., 1991, ALGEBRAIC GEOMETRIC
[10]   Geometric approach to higher weights [J].
Tsfasman, MA ;
Vladut, SG .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1995, 41 (06) :1564-1588