A new necessary condition for Turing instabilities

被引:4
作者
Elragig, Aiman [2 ]
Townley, Stuart [1 ]
机构
[1] Univ Exeter, Coll Engn Math & Phys Sci, Environm & Sustainabil Inst, Exeter EX4 4QJ, Devon, England
[2] Univ Exeter, Coll Engn Math & Phys Sci, Math Res Inst, Exeter EX4 4QJ, Devon, England
关键词
Lyapunov function; Diffusion driven (Turing) instability; Reactivity; Semi-definite programming; PATTERN-FORMATION; REACTION-DIFFUSION; SPATIAL-PATTERN; SYSTEMS; MODELS; HETEROGENEITY; OSCILLATIONS; STABILITY; DYNAMICS;
D O I
10.1016/j.mbs.2012.04.006
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Reactivity (a.k.a initial growth) is necessary for diffusion driven instability (Turing instability). Using a notion of common Lyapunov function we show that this necessary condition is a special case of a more powerful (i.e. tighter) necessary condition. Specifically, we show that if the linearised reaction matrix and the diffusion matrix share a common Lyapunov function, then Turing instability is not possible. The existence of common Lyapunov functions is readily checked using semi-definite programming. We apply this result to the Gierer-Meinhardt system modelling regenerative properties of Hydra, the Oregonator, to a host-parasite-hyperparasite system with diffusion and to a reaction-diffusion-chemotaxis model for a multi-species host-parasitoid community. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:131 / 138
页数:8
相关论文
共 41 条
[41]   Parameter domains for generating spatial pattern: A comparison of reaction-diffusion and cell-chemotaxis models [J].
Zhu, M ;
Murray, JD .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1995, 5 (06) :1503-1524