A new necessary condition for Turing instabilities

被引:4
作者
Elragig, Aiman [2 ]
Townley, Stuart [1 ]
机构
[1] Univ Exeter, Coll Engn Math & Phys Sci, Environm & Sustainabil Inst, Exeter EX4 4QJ, Devon, England
[2] Univ Exeter, Coll Engn Math & Phys Sci, Math Res Inst, Exeter EX4 4QJ, Devon, England
关键词
Lyapunov function; Diffusion driven (Turing) instability; Reactivity; Semi-definite programming; PATTERN-FORMATION; REACTION-DIFFUSION; SPATIAL-PATTERN; SYSTEMS; MODELS; HETEROGENEITY; OSCILLATIONS; STABILITY; DYNAMICS;
D O I
10.1016/j.mbs.2012.04.006
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Reactivity (a.k.a initial growth) is necessary for diffusion driven instability (Turing instability). Using a notion of common Lyapunov function we show that this necessary condition is a special case of a more powerful (i.e. tighter) necessary condition. Specifically, we show that if the linearised reaction matrix and the diffusion matrix share a common Lyapunov function, then Turing instability is not possible. The existence of common Lyapunov functions is readily checked using semi-definite programming. We apply this result to the Gierer-Meinhardt system modelling regenerative properties of Hydra, the Oregonator, to a host-parasite-hyperparasite system with diffusion and to a reaction-diffusion-chemotaxis model for a multi-species host-parasitoid community. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:131 / 138
页数:8
相关论文
共 41 条
[1]   Periodicity of cell attachment patterns during Escherichia coli biofilm development [J].
Agladze, K ;
Jackson, D ;
Romeo, T .
JOURNAL OF BACTERIOLOGY, 2003, 185 (18) :5632-5638
[2]  
[Anonymous], 1985, Matrix Analysis
[3]   Spatio-temporal pattern formation on spherical surfaces: numerical simulation and application to solid tumour growth [J].
Chaplain, MAJ ;
Ganesh, M ;
Graham, IG .
JOURNAL OF MATHEMATICAL BIOLOGY, 2001, 42 (05) :387-423
[4]   PATTERN-FORMATION OUTSIDE OF EQUILIBRIUM [J].
CROSS, MC ;
HOHENBERG, PC .
REVIEWS OF MODERN PHYSICS, 1993, 65 (03) :851-1112
[5]  
Dahlquist G., 1959, T R I TECHNOL, V130
[6]  
Edelstein-Keshet A., 1988, MATH MODELS BIOL
[7]   Nonlinear chemical dynamics: Oscillations, patterns, and chaos [J].
Epstein, IR ;
Showalter, K .
JOURNAL OF PHYSICAL CHEMISTRY, 1996, 100 (31) :13132-13147
[8]  
FIELD RJ, 1974, J CHEM PHYS, V60, P1877, DOI 10.1063/1.1681288
[9]   A sufficient condition for additive D-stability and application to reaction-diffusion models [J].
Ge, Xiaoqing ;
Arcak, Murat .
SYSTEMS & CONTROL LETTERS, 2009, 58 (10-11) :736-741
[10]   THEORY OF BIOLOGICAL PATTERN FORMATION [J].
GIERER, A ;
MEINHARDT, H .
KYBERNETIK, 1972, 12 (01) :30-39