Inference of epidemiological parameters from household stratified data

被引:5
|
作者
Walker, James N. [1 ,2 ]
Ross, Joshua V. [1 ,2 ]
Black, Andrew J. [1 ,2 ]
机构
[1] Univ Adelaide, Sch Math Sci, Stochast Modelling & Operat Res Grp, Adelaide, SA 5005, Australia
[2] Univ Adelaide, Sch Math Sci, ACEMS, Adelaide, SA 5005, Australia
来源
PLOS ONE | 2017年 / 12卷 / 10期
基金
澳大利亚研究理事会; 澳大利亚国家健康与医学研究理事会;
关键词
BAYESIAN-INFERENCE; 2009; INFLUENZA; EPIDEMICS; 1ST; COMMUNITY; MODELS;
D O I
10.1371/journal.pone.0185910
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We consider a continuous-time Markov chain model of SIR disease dynamics with two levels of mixing. For this so-called stochastic households model, we provide two methods for inferring the model parameters-governing within-household transmission, recovery, and between-household transmission-from data of the day upon which each individual became infectious and the household in which each infection occurred, as might be available from First Few Hundred studies. Each method is a form of Bayesian Markov Chain Monte Carlo that allows us to calculate a joint posterior distribution for all parameters and hence the household reproduction number and the early growth rate of the epidemic. The first method performs exact Bayesian inference using a standard data-augmentation approach; the second performs approximate Bayesian inference based on a likelihood approximation derived from branching processes. These methods are compared for computational efficiency and posteriors from each are compared. The branching process is shown to be a good approximation and remains computationally efficient as the amount of data is increased.
引用
收藏
页数:21
相关论文
共 50 条
  • [21] Bayesian inference of root architectural model parameters from synthetic field data
    Shehan Morandage
    Eric Laloy
    Andrea Schnepf
    Harry Vereecken
    Jan Vanderborght
    Plant and Soil, 2021, 467 : 67 - 89
  • [22] Bayesian inference of constitutive parameters from video data of the impact dynamics of a ball
    Buezas, Fernando S.
    Fochesatto, Nicolas
    Rosales, Marta B.
    Tuckart, Walter
    ARCHIVE OF APPLIED MECHANICS, 2020, 90 (08) : 1795 - 1810
  • [23] Bayesian inference of molecular kinetic parameters from astrocyte calcium imaging data
    Maly, Ivan, V
    Hofmann, Wilma A.
    METHODSX, 2022, 9
  • [24] Bayesian inference of constitutive parameters from video data of the impact dynamics of a ball
    Fernando S. Buezas
    Nicolás Fochesatto
    Marta B. Rosales
    Walter Tuckart
    Archive of Applied Mechanics, 2020, 90 : 1795 - 1810
  • [25] Bayesian Inference of Drag Parameters Using AXBT Data from Typhoon Fanapi
    Sraj, Ihab
    Iskandarani, Mohamed
    Srinivasan, Ashwanth
    Thacker, W. Carlisle
    Winokur, Justin
    Alexanderian, Alen
    Lee, Chia-Ying
    Chen, Shuyi S.
    Knio, Omar M.
    MONTHLY WEATHER REVIEW, 2013, 141 (07) : 2347 - 2367
  • [26] Inference of solar magnetic field parameters from data with limited wavelength sampling
    Graham, JD
    Ariste, AL
    Socas-Navarro, H
    Tomczyk, S
    SOLAR PHYSICS, 2002, 208 (02) : 211 - 232
  • [27] Bayesian inference of root architectural model parameters from synthetic field data
    Morandage, Shehan
    Laloy, Eric
    Schnepf, Andrea
    Vereecken, Harry
    Vanderborght, Jan
    PLANT AND SOIL, 2021, 467 (1-2) : 67 - 89
  • [28] Inference on COVID-19 Epidemiological Parameters Using Bayesian Survival Analysis
    Bardelli, Chiara
    ENTROPY, 2021, 23 (10)
  • [29] Estimating Temporal Transmission Parameters from Infectious Disease Household Data, with Application to Taiwan SARS Data
    Chang I.-S.
    Fu S.-J.
    Chen C.-H.
    Wang T.-H.
    Hsiung C.A.
    Statistics in Biosciences, 2009, 1 (1) : 80 - 94
  • [30] Statistical inference using stratified judgment post-stratified samples from finite populations
    Ozturk, Omer
    Bayramoglu Kavlak, Konul
    ENVIRONMENTAL AND ECOLOGICAL STATISTICS, 2020, 27 (01) : 73 - 94