Thermal conductivity of diamond composites sintered under high pressures

被引:148
作者
Ekimov, E. A. [1 ]
Suetin, N. V. [2 ]
Popovich, A. F. [3 ]
Ralchenko, V. G. [3 ]
机构
[1] Russian Acad Sci, Inst High Pressure Phys, Troitsk 142190, Moscow Region, Russia
[2] Moscow MV Lomonosov State Univ, Skobeltsyn Inst Nucl Phys, Moscow 117234, Russia
[3] RAS, Inst Gen Phys, Troitsk 142190, Moscow Region, Russia
关键词
composites; thermal properties; synthetic diamond; high pressure-high temperature;
D O I
10.1016/j.diamond.2007.12.051
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Thermal conductivity at room temperature of diamond composites of two types: with a diamond skeleton and with diamond grains imbedded in a non-diamond matrix was evaluated in dependence of the diamond grain size (a) varied from a ten of microns to 500 mu m. The thermal conductivity of the compacts with diamond skeleton obtained in the Cu-diamond system at high pressure of 8 GPa strongly increases with diamond particles size approaching the maximum value of 9 W/cm K at d approximate to 200 mu m. The compacts sintered in the Cu-Ti-diamond, AI-Si-diamond and Si-diamond systems at lower pressure (2 GPa) are formed predominantly owing to the presence of the binder. It was found for these conditions that the thermal conductivity is less sensitive to the diamond grain size, reaching the value of 6 W/cm K for the composites with SiC-Si matrix. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:838 / 843
页数:6
相关论文
共 50 条
[31]   Optimizing thermal conductivity in gas-pressure infiltrated aluminum/diamond composites by precise processing control [J].
Monje, I. E. ;
Louis, E. ;
Molina, J. M. .
COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2013, 48 :9-14
[32]   Effect of sintering temperature on the microstructure and thermal conductivity of Al/diamond composites prepared by spark plasma sintering [J].
Chu, Ke ;
Jia, Cheng-chang ;
Liang, Xue-bing ;
Chen, Hui .
INTERNATIONAL JOURNAL OF MINERALS METALLURGY AND MATERIALS, 2010, 17 (02) :234-240
[33]   Deep crystallization induced high thermal conductivity of low-temperature sintered Ag nanoparticles [J].
Ji, Hongjun ;
Wang, Shuai ;
Li, Mingyu ;
Kim, Jongmyung .
MATERIALS LETTERS, 2014, 116 :219-222
[34]   Thermal Conductivity of Al–Salt Composites [J].
Peng Li ;
Mei Zhang ;
Lijun Wang ;
Seshadri Seetharaman .
International Journal of Thermophysics, 2015, 36 :3037-3050
[35]   Thermal conductivity of PTFE and PTFE composites [J].
Price, DM ;
Jarratt, M .
THERMOCHIMICA ACTA, 2002, 392 :231-236
[36]   Flexible and environmentally friendly graphene natural rubber composites with high thermal conductivity for thermal management [J].
Duan, Xiaoyuan ;
Cheng, Shuaishuai ;
Li, Zhiwei ;
Liang, Chaobo ;
Zhang, Zhiyi ;
Zhao, Guizhe ;
Liu, Yaqing ;
An, Dong ;
Sun, Zhijian ;
Wong, Chingping .
COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2022, 163
[37]   High thermal conductivity diamond-doped silver paste for power electronics packaging [J].
Zhao, Peihao ;
Li, Xin ;
Mei, Yunhui ;
Lu, Guo-Quan .
MATERIALS LETTERS, 2022, 311
[38]   Evaluation of thermal management performance of high thermal conductivity Cu/VO2 composites [J].
Baba, Masaaki ;
Otuki, Kazuma ;
Kinemuchi, Yoshiaki ;
Takeda, Masatoshi .
APPLIED THERMAL ENGINEERING, 2025, 271
[39]   An investigation on thermal conductivity of core-shell particle composites under effects of thermal contact resistance [J].
Wang, Xiaojian ;
Fu, Xinru ;
Li, Honghong ;
Zhang, Yuanyuan ;
Huang, Simin .
INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2024, 156
[40]   Thermal conductivity models for Carbon/Liquid crystal polymer composites [J].
Keith, Jason M. ;
King, Julia A. ;
Lenhart, Kara M. ;
Zimny, Bridget .
JOURNAL OF APPLIED POLYMER SCIENCE, 2007, 105 (06) :3309-3316