Self-Assembled LiNi1/3Co1/3Mn1/3O2 Nanosheet Cathode with High Electrochemical Performance

被引:52
作者
Zheng, Hao [1 ,2 ]
Chen, Xiao [1 ]
Yang, Yun [1 ]
Li, Lin [2 ]
Li, Guohua [3 ]
Guo, Zaiping [1 ,4 ]
Feng, Chuanqi [1 ]
机构
[1] Hubei Univ, Hubei Collaborat Innovat Ctr Adv Organ Chem Mat, Wuhan 430062, Hubei, Peoples R China
[2] Anshun Univ, Key Lab Funct Mat & Chem Performance & Resources, Guizhou Educ Dept, Anshun 561000, Peoples R China
[3] Zhejiang Univ Technol, Sch Chem Engn & Mat Sci, Hangzhou 310032, Zhejiang, Peoples R China
[4] Univ Wollongong, Inst Superconducting & Elect Mat, Wollongong, NSW 2522, Australia
基金
中国国家自然科学基金;
关键词
LiNi1/3Co1/3Mn1/3O2; nanosheets; self-assembled; cathode material; lithium-ion batteries; LITHIUM-ION BATTERIES; LIFEPO4; NANOSHEETS; RATE CAPABILITY; ENERGY-STORAGE; SURFACE; NANOMATERIALS; EXFOLIATION; DEPOSITION; FACETS;
D O I
10.1021/acsami.7b10264
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We have fabricated self-assembled LiNi1/3Co1/3Mn1/3O2 nanosheets via a facile synthesis method combining coprecipitation with the hydrothermal method. Scanning electron microscopic images show that the self assembly processes for the LiNi1/3Co1/3Mn1/3O2 nanosheets depend on the reaction time and temperature. The nanosheet structure is uniform, and the width and thickness of the nanosheets are in the ranges of 0.7-1.5 mu m and 10-100 nm, respectively. As a cathode material, the as-synthesized LiNi1/3Co1/3Mn1/3O2 nanosheets have demonstrated outstanding electrochemical performance. The initial specific capacity was 193 mAh g(-1), and the capacity was maintained capacity was 193 mAh g(-1), and the capacity was maintained at 189 mAh g(-1) after 100 cycles at 0.2 C, and 155 mAh g(-1) at 1 C (after 1000 cycles). The LiNi1/3Co1/3Mn1/3O2 nanosheets have efficient contact with the electrolyte and short Li+ diffusion paths, as well as sufficient void spaces to accommodate large volume variation. The nanosheets are thus beneficial to the diffusion of Li+ in the electrode. The enhanced electrical conductance and excellent capacity demonstrate the great potential of LiNi1/3Co1/3Mn1/3O2 nanosheets for energy storage applications.
引用
收藏
页码:39560 / 39568
页数:9
相关论文
共 41 条
[1]   Nanomaterials for rechargeable lithium batteries [J].
Bruce, Peter G. ;
Scrosati, Bruno ;
Tarascon, Jean-Marie .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (16) :2930-2946
[2]   Controllable growth of TiO2-B nanosheet arrays on carbon nanotubes as a high-rate anode material for lithium-ion batteries [J].
Chen, Chaoji ;
Hu, Xianluo ;
Wang, Zhaohui ;
Xiong, Xiaoqin ;
Hu, Pei ;
Liu, Yang ;
Huang, Yunhui .
CARBON, 2014, 69 :302-310
[3]   Functional Materials for Rechargeable Batteries [J].
Cheng, Fangyi ;
Liang, Jing ;
Tao, Zhanliang ;
Chen, Jun .
ADVANCED MATERIALS, 2011, 23 (15) :1695-1715
[4]   Self-assembled V2O5 nanosheets/reduced graphene oxide hierarchical nanocomposite as a high-performance cathode material for lithium ion batteries [J].
Cheng, Jianli ;
Wang, Bin ;
Xin, Huolin L. ;
Yang, Guangcheng ;
Cai, Huaqiang ;
Nie, Fude ;
Huang, Hui .
JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (36) :10814-10820
[5]   Exfoliation of LiNi1/3Mn1/3Co1/3O2 into Nanosheets Using Electrochemical Oxidation and Reassembly with Dialysis or Flocculation [J].
Cheng, Qian ;
Yang, Ting ;
Li, Man ;
Chan, Candace K. .
LANGMUIR, 2017, 33 (37) :9271-9279
[6]   Alteration of Membrane Compositional Asymmetry by LiCoO2 Nanosheets [J].
Dogangun, Merve ;
Hang, Mimi N. ;
Troiano, Julianne M. ;
McGeachy, Alicia C. ;
Melby, Eric S. ;
Pedersen, Joel A. ;
Hamers, Robert J. ;
Geiger, Franz M. .
ACS NANO, 2015, 9 (09) :8755-8765
[7]   Electrical Energy Storage for the Grid: A Battery of Choices [J].
Dunn, Bruce ;
Kamath, Haresh ;
Tarascon, Jean-Marie .
SCIENCE, 2011, 334 (6058) :928-935
[8]   Designed synthesis of a unique single-crystal Fedoped LiNiPO4 nanomesh as an enhanced cathode for lithium ion batteries [J].
Feng, Yangyang ;
Zhang, Huijuan ;
Fang, Ling ;
Ouyang, Ya ;
Wang, Yu .
JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (31) :15969-15976
[9]   Synthesis of single crystalline hexagonal nanobricks of LiNi1/3Co1/3Mn1/3O2 with high percentage of exposed {010} active facets as high rate performance cathode material for lithium-ion battery [J].
Fu, Fang ;
Xu, Gui-Liang ;
Wang, Qi ;
Deng, Ya-Ping ;
Li, Xue ;
Li, Jun-Tao ;
Huang, Ling ;
Sun, Shi-Gang .
JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (12) :3860-3864
[10]   Surface Structure, Morphology, and Stability of Li(Ni1/3Mn1/3Co1/3)O2 Cathode Material [J].
Garcia, Juan C. ;
Bareno, Javier ;
Yan, Jianhua ;
Chen, Guoying ;
Hauser, Andrew ;
Croy, Jason R. ;
Iddir, Hakim .
JOURNAL OF PHYSICAL CHEMISTRY C, 2017, 121 (15) :8290-8299