Hierarchically porous nanoflowers from TiO2-B nanosheets with ultrahigh surface area for advanced lithium-ion batteries

被引:25
作者
Huang, Hui [1 ]
Yu, Zhaoyang [1 ]
Zhu, Wenjun [1 ]
Gan, Yongping [1 ]
Xia, Yang [1 ]
Tao, Xinyong [1 ]
Zhang, Wenkui [1 ]
机构
[1] Zhejiang Univ Technol, Coll Chem Engn & Mat Sci, Hangzhou 310014, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Microporous materials; Nanostructures; Oxides; Electrochemical properties; NEGATIVE ELECTRODE MATERIAL; PHOTOCATALYTIC ACTIVITY; RATE PERFORMANCE; HYBRID NANOSTRUCTURES; RATE CAPABILITY; NANOTUBES; STORAGE; PHASE; MICROSPHERES; COMPOSITES;
D O I
10.1016/j.jpcs.2013.12.020
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In this work, hierarchically porous TiO2-B nanoflowers have been successfully synthesized via a facile solvothermal method followed by calcination treatment. The TiO2-B nanoflowers are constructed by thin nanosheets, presenting ultrahigh specific surface area, up to 214.6 m(2) g(-1). As anode materials for Li-ion batteries, the TiO2-B sample shows high reversible capacity, excellent cycling performance and superior rate capability. The specific capacity of TiO2-B could remain over 285 mA h g(-1) at 1 C and 181 mA h g(-1) at 10 C rate after 100 cycles. We believe that the pseudocapacitive mechanism, ultrahigh surface area and scrupulous nanoarchitecture of the TiO2-B are responsible for the enhancement of electrochemical properties. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:619 / 623
页数:5
相关论文
共 52 条
[1]   Constructing high energy density non-aqueous Li-ion capacitors using monoclinic TiO2-B nanorods as insertion host [J].
Aravindan, V. ;
Shubha, N. ;
Ling, W. Chui ;
Madhavi, S. .
JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (20) :6145-6151
[2]   Nanostructured materials for advanced energy conversion and storage devices [J].
Aricò, AS ;
Bruce, P ;
Scrosati, B ;
Tarascon, JM ;
Van Schalkwijk, W .
NATURE MATERIALS, 2005, 4 (05) :366-377
[3]   Lithium Coordination Sites in LixTiO2(B): A Structural and Computational Study [J].
Armstrong, A. Robert ;
Arrouvel, Corinne ;
Gentili, Valentina ;
Parker, Stephen C. ;
Islam, M. Saiful ;
Bruce, Peter G. .
CHEMISTRY OF MATERIALS, 2010, 22 (23) :6426-6432
[4]   TiO2-B nanowires [J].
Armstrong, AR ;
Armstrong, G ;
Canales, J ;
Bruce, PG .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2004, 43 (17) :2286-2288
[5]   Lithium-ion intercalation into TiO2-B nanowires [J].
Armstrong, AR ;
Armstrong, G ;
Canales, J ;
García, R ;
Bruce, PG .
ADVANCED MATERIALS, 2005, 17 (07) :862-+
[6]   Nanotubes with the TiO2-B structure [J].
Armstrong, G ;
Armstrong, AR ;
Canales, J ;
Bruce, PG .
CHEMICAL COMMUNICATIONS, 2005, (19) :2454-2456
[7]   Lithium Insertion and Transport in the TiO2-B Anode Material: A Computational Study [J].
Arrouvel, Corinne ;
Parker, Stephen C. ;
Islam, M. Saiful .
CHEMISTRY OF MATERIALS, 2009, 21 (20) :4778-4783
[8]   TiO2(B) Nanoribbons As Negative Electrode Material for Lithium Ion Batteries with High Rate Performance [J].
Beuvier, Thomas ;
Richard-Plouet, Mireille ;
Mancini-Le Granvalet, Maryline ;
Brousse, Thierry ;
Crosnier, Olivier ;
Brohan, Luc .
INORGANIC CHEMISTRY, 2010, 49 (18) :8457-8464
[9]   TiO2-(B) Nanotubes as Anodes for Lithium Batteries: Origin and Mitigation of Irreversible Capacity [J].
Brutti, Sergio ;
Gentili, Valentina ;
Menard, Herve ;
Scrosati, Bruno ;
Bruce, Peter G. .
ADVANCED ENERGY MATERIALS, 2012, 2 (03) :322-327
[10]   SnO2 and TiO2 nanosheets for lithium-ion batteries [J].
Chen, Jun Song ;
Lou, Xiong Wen .
MATERIALS TODAY, 2012, 15 (06) :246-254