Strategy for Enhancing Ultrahigh-Molecular-Weight Block Copolymer Chain Mobility to Access Large Period Sizes (>100 nm)

被引:16
作者
Cummins, Cian [2 ,3 ]
Alvarez-Fernandez, Alberto [1 ]
Bentaleb, Ahmed [2 ]
Hadziioannou, Georges [3 ]
Ponsinet, Virginie [2 ]
Fleury, Guillaume [3 ]
机构
[1] UCL, Dept Chem Engn, London WC1E 7JE, England
[2] Univ Bordeaux, CNRS, Ctr Rech Paul Pascal, UMR 5031, F-33600 Pessac, France
[3] Univ Bordeaux, CNRS, Bordeaux INP, LCPO,UMR 5629, F-33600 Pessac, France
关键词
Energy gap - Lamellar structures - Molecular weight - Styrene - Block copolymers - Photonic band gap;
D O I
10.1021/acs.langmuir.0c02261
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Assembling ultrahigh-molecular-weight (UHMW) block copolymers (BCPs) in rapid time scales is perceived as a grand challenge in polymer science due to slow kinetics. Through surface engineering and identifying a nonvolatile solvent (propylene glycol methyl ether acetate, PGMEA), we showcase the impressive ability of a series of lamellar poly(styrene)-block-poly(2-vinylpyridine) ( PS-b-P2VP) BCPs to selfassemble directly after spin-coating. In particular, we show the formation of large-period (approximate to 111 nm) lamellar structures from a neat UHMW PS-bP2VP BCP. The significant influence of solvent-polymer solubility parameters are explored to enhance the polymer chain mobility. After optimization using solvent vapor annealing, increased feature order of ultralarge-period PS-b-P2VP BCP patterns in 1 h is achieved. Isolated metallic and dielectric features are also demonstrated to exemplify the promise that large BCP periods offer for functional applications. The methods described in this article center on industry-compatible patterning schemes, solvents, and deposition techniques. Thus, our straightforward UHMW BCP strategy potentially paves a viable and practical path forward for large-scale integration in various sectors, e.g., photonic band gaps, polarizers, and membranes that demand ultralarge period sizes.
引用
收藏
页码:13872 / 13880
页数:9
相关论文
共 61 条
[1]   Advances and applications of block-copolymer-based nanoformulations [J].
Agrahari, Vibhuti ;
Agrahari, Vivek .
DRUG DISCOVERY TODAY, 2018, 23 (05) :1139-1151
[2]   Formation and optical response of self-assembled gold nanoparticle lattices on oxidized silicon synthesized using block copolymers [J].
Alvarez-Fernandez, Alberto ;
Fleury, Guillaume ;
Ponsinet, Virginie ;
Walmsness, Per Magnus ;
Kildemo, Morten .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2020, 38 (01)
[3]   High refractive index in low metal content nanoplasmonic surfaces from self-assembled block copolymer thin films [J].
Alvarez-Fernandez, Alberto ;
Aissou, Karim ;
Pecastaings, Gilles ;
Hadziioannou, Georges ;
Fleury, Guillaume ;
Ponsinet, Virginie .
NANOSCALE ADVANCES, 2019, 1 (02) :849-857
[4]   Electrochemical Sensing of Hydrogen Peroxide Using Block Copolymer Templated Iron Oxide Nanopatterns [J].
Bas, Salih Z. ;
Cummins, Cian ;
Borah, Dipu ;
Ozmen, Mustafa ;
Morris, Michael A. .
ANALYTICAL CHEMISTRY, 2018, 90 (02) :1122-1128
[5]   Multiblock Polymers: Panacea or Pandora's Box? [J].
Bates, Frank S. ;
Hillmyer, Marc A. ;
Lodge, Timothy P. ;
Bates, Christopher M. ;
Delaney, Kris T. ;
Fredrickson, Glenn H. .
SCIENCE, 2012, 336 (6080) :434-440
[6]   Block copolymers - Designer soft materials [J].
Bates, FS ;
Fredrickson, GH .
PHYSICS TODAY, 1999, 52 (02) :32-38
[7]   Sequential Infiltration Synthesis for the Design of Low Refractive Index Surface Coatings with Controllable Thickness [J].
Berman, Diana ;
Guha, Supratik ;
Lee, Byeongdu ;
Elam, Jeffrey W. ;
Darling, Seth B. ;
Shevchenko, Elena V. .
ACS NANO, 2017, 11 (03) :2521-2530
[8]  
Bohme S., 2016, ROUTE IND COMPATIBLE
[9]   A Metasurfaces Review: Definitions and Applications [J].
Bukhari, Syed S. ;
Vardaxoglou, J. ;
Whittow, William .
APPLIED SCIENCES-BASEL, 2019, 9 (13)
[10]   Optical Metasurfaces: Progress and Applications [J].
Chang, Shengyuan ;
Guo, Xuexue ;
Ni, Xingjie .
ANNUAL REVIEW OF MATERIALS RESEARCH, VOL 48, 2018, 48 :279-302