Unitary vector fields are Fermi-Walker transported along Rytov-Legendre curves

被引:7
作者
Crasmareanu, Mircea [1 ]
Frigioiu, Camelia [2 ]
机构
[1] Alexandru Ioan Cuza Univ, Fac Math, Iasi 700506, Romania
[2] Univ Dunarea de Jos, Fac Sci & Environm, Galati 800201, Romania
关键词
Reeb vector field; Legendre curve; Rytov curve; Fermi-Walker transport; circle; SLANT CURVES;
D O I
10.1142/S021988781550111X
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Fix xi a unitary vector field on a Riemannian manifold M and gamma a non-geodesic Frenet curve on M satisfying the Rytov law of polarization optics. We prove in these conditions that gamma is a Legendre curve for xi if and only if the gamma-Fermi-Walker covariant derivative of xi vanishes. The cases when gamma is circle or helix as well as xi is (conformal) Killing vector filed or potential vector field of a Ricci soliton are analyzed and an example involving a three-dimensional warped metric is provided. We discuss also K-(para) contact, particularly (para) Sasakian, manifolds and hypersurfaces in complex space forms.
引用
收藏
页数:9
相关论文
共 25 条
[1]  
[Anonymous], 2005, TEXT APPL M, DOI 10.1007/978-1-4899-7276-7
[2]   ON LEGENDRE CURVES IN CONTACT 3-MANIFOLDS [J].
BAIKOUSSIS, C ;
BLAIR, DE .
GEOMETRIAE DEDICATA, 1994, 49 (02) :135-142
[3]   General helices and a theorem of Lancret [J].
Barros, M .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1997, 125 (05) :1503-1509
[4]  
Belkhelfa M., 2002, Soochow J. Math, V28, P81
[5]  
Blair D. E., 1995, NOTE MAT, V15, P99
[6]  
Blair D.E., 2010, PROGR MATH, V203
[7]   Slant curves in three-dimensional f-Kenmotsu manifolds [J].
Calin, Constantin ;
Crasmareanu, Mircea ;
Munteanu, Marian Ioan .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 394 (01) :400-407
[8]   On slant curves in Sasakian 3-manifolds [J].
Cho, Jong Taek ;
Inoguchi, Jun-ichi ;
Lee, Ji-Eun .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2006, 74 (03) :359-367
[9]   SLANT CURVES IN CONTACT PSEUDO-HERMITIAN 3-MANIFOLDS [J].
Cho, Jong Taek ;
Lee, Ji-Eun .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2008, 78 (03) :383-396
[10]  
Chruscinski D., 2004, Geometric Phases in Classical and Quantum Mechanics, Progress in Mathematical Physics, Vvol. 36