Double power-law viscoelastic relaxation of living cells encodes motility trends

被引:55
作者
de Sousa, J. S. [1 ]
Freire, R. S. [2 ]
Sousa, F. D. [1 ]
Radmacher, M. [3 ]
Silva, A. F. B. [4 ]
Ramos, M. V. [4 ]
Monteiro-Moreira, A. C. O. [5 ]
Mesquita, F. P. [6 ]
Moraes, M. E. A. [6 ]
Montenegro, R. C. [6 ]
Oliveira, C. L. N. [1 ]
机构
[1] Univ Fed Ceara, Dept Fis, BR-60455970 Fortaleza, Ceara, Brazil
[2] Univ Fed Ceara, Cent Analit, BR-60455970 Fortaleza, Ceara, Brazil
[3] Univ Bremen, Inst Biophys, Otto Hahn Allee 1, D-28359 Bremen, Germany
[4] Univ Fed Ceara, Dept Bioquim & Biol Mol, BR-60440554 Fortaleza, Ceara, Brazil
[5] Univ Fortaleza, Ctr Biol Expt, BR-60811905 Fortaleza, Ceara, Brazil
[6] Univ Fed Ceara, Nucleo Pesquisa & Desenvolvimento Med, BR-60430275 Fortaleza, Ceara, Brazil
关键词
SMOOTH-MUSCLE-CELLS; GASTRIC-CANCER; MECHANICS; MICRORHEOLOGY; RHEOLOGY; STIFFNESS; MICROENVIRONMENT; RESPONSES; DYNAMICS; BEHAVIOR;
D O I
10.1038/s41598-020-61631-w
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Living cells are constantly exchanging momentum with their surroundings. So far, there is no consensus regarding how cells respond to such external stimuli, although it reveals much about their internal structures, motility as well as the emergence of disorders. Here, we report that twelve cell lines, ranging from healthy fibroblasts to cancer cells, hold a ubiquitous double power-law viscoelastic relaxation compatible with the fractional Kelvin-Voigt viscoelastic model. Atomic Force Microscopy measurements in time domain were employed to determine the mechanical parameters, namely, the fast and slow relaxation exponents, the crossover timescale between power law regimes, and the cell stiffness. These cell-dependent quantities show strong correlation with their collective migration and invasiveness properties. Beyond that, the crossover timescale sets the fastest timescale for cells to perform their biological functions.
引用
收藏
页数:10
相关论文
共 55 条
[1]   Microrheology of human lung epithelial cells measured by atomic force microscopy [J].
Alcaraz, J ;
Buscemi, L ;
Grabulosa, M ;
Trepat, X ;
Fabry, B ;
Farré, R ;
Navajas, D .
BIOPHYSICAL JOURNAL, 2003, 84 (03) :2071-2079
[2]  
[Anonymous], 2010, NAT PHYS, V6, P10
[3]  
[Anonymous], 1999, NATURE, V397, P89, DOI [10.1038/16298, DOI 10.1038/16298]
[4]  
BLAIR GWS, 1947, J COLL SCI IMP U TOK, V2, P21
[5]   A unified rheological model for cells and cellularised materials [J].
Bonfanti, A. ;
Fouchard, J. ;
Khalilgharibi, N. ;
Charras, G. ;
Kabla, A. .
ROYAL SOCIETY OPEN SCIENCE, 2020, 7 (01)
[6]   Quantifying Cell-to-Cell Variation in Power-Law Rheology [J].
Cai, PingGen ;
Mizutani, Yusuke ;
Tsuchiya, Masahiro ;
Maloney, John M. ;
Fabry, Ben ;
Van Vliet, Krystyn J. ;
Okajima, Takaharu .
BIOPHYSICAL JOURNAL, 2013, 105 (05) :1093-1102
[7]   MMP16 is a marker of poor prognosis in gastric cancer promoting proliferation and invasion [J].
Cao, Li ;
Chen, Chaowu ;
Zhu, Haihang ;
Gu, Xuewen ;
Deng, Denghao ;
Tian, Xiuchun ;
Liu, Jun ;
Xiao, Qin .
ONCOTARGET, 2016, 7 (32) :51865-51874
[8]   A one-step procedure to probe the viscoelastic properties of cells by Atomic Force Microscopy [J].
Chim, Ya Hua ;
Mason, Louise M. ;
Rath, Nicola ;
Olson, Michael F. ;
Tassieri, Manlio ;
Yin, Huabing .
SCIENTIFIC REPORTS, 2018, 8
[9]   Monitoring Actin Cortex Thickness in Live Cells [J].
Clark, Andrew G. ;
Dierkes, Kai ;
Paluch, Ewa K. .
BIOPHYSICAL JOURNAL, 2013, 105 (03) :570-580
[10]   Analytical model of atomic-force-microscopy force curves in viscoelastic materials exhibiting power law relaxation [J].
de Sousa, J. S. ;
Santos, J. A. C. ;
Barros, E. B. ;
Alencar, L. M. R. ;
Cruz, W. T. ;
Ramos, M. V. ;
Mendes Filho, J. .
JOURNAL OF APPLIED PHYSICS, 2017, 121 (03)