Higher order averaging theory for finding periodic solutions via Brouwer degree

被引:127
作者
Llibre, Jaume [1 ]
Novaes, Douglas D. [1 ,2 ]
Teixeira, Marco A. [2 ]
机构
[1] Univ Autonoma Barcelona, Dept Matemat, E-08193 Barcelona, Catalonia, Spain
[2] Univ Estadual Campinas, Dept Matemat, BR-13083859 Campinas, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
periodic solution; averaging method; non-smooth differential system; discontinuous differential system; Brouwer degree; LIMIT-CYCLES; LIENARD EQUATIONS; UNIQUENESS; ORBITS;
D O I
10.1088/0951-7715/27/3/563
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we deal with nonlinear differential systems of the form x'(t) = Sigma(k)(i=0) epsilon(i) F(i()t,x) + epsilon(k+1) R(t,x,epsilon), where F-i : R x D -> R-n for i = 0, 1, ... , k, and R : R x D x (-epsilon 0, epsilon 0). R-n are continuous functions, and T - periodic in the first variable, D being an open subset of R-n, and epsilon a small parameter. For such differential systems, which do not need to be of class C-1, under convenient assumptions we extend the averaging theory for computing their periodic solutions to k-th order in epsilon. Some applications are also performed.
引用
收藏
页码:563 / 583
页数:21
相关论文
共 27 条
[1]  
[Anonymous], 1928, REV GENERALE LELECTR, DOI DOI 10.1016/J.JWEIA.2013.09.002
[2]  
[Anonymous], 2007, Appl. Math. Sci
[3]  
Bogoliubov N. N., 1945, SOME STAT METHODS MA
[4]  
Bogoliubov N.N., 1934, The application of methods of nonlinear mechanics in the theory of stationary oscillations
[5]  
Bowman F, 1958, Introduction to Bessel Function
[6]   FIXED-POINT THEORY AND NON-LINEAR PROBLEMS [J].
BROWDER, FE .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 9 (01) :1-39
[7]   Averaging methods for finding periodic orbits via Brouwer degree [J].
Buica, A ;
Llibre, J .
BULLETIN DES SCIENCES MATHEMATIQUES, 2004, 128 (01) :7-22
[8]  
Conti R., 1998, MATHEMATICHE, V2, P207
[9]  
Coppel WA., 1989, Dyn. Rep, V2, P61
[10]   CUBIC LIENARD EQUATIONS WITH LINEAR DAMPING [J].
DUMORTIER, F ;
ROUSSEAU, C .
NONLINEARITY, 1990, 3 (04) :1015-1039