Room-temperature miscibility gap in LixFePO4

被引:497
作者
Yamada, A
Koizumi, H
Nishimura, SI
Sonoyama, N
Kanno, R
Yonemura, M
Nakamura, T
Kobayashi, Y
机构
[1] Tokyo Inst Technol, Grad Sch Sci & engn, Dept Elect Chem, Interdisciplinary Grad Sch Sci & Engn, Yokohama, Kanagawa 2268502, Japan
[2] Univ Hyogo, Grad Sch Engn, Dept Elect Engn & Comp Sci, Himeji, Hyogo 6712201, Japan
[3] Ibaraki Univ, Grad Sch Sci & Engn, Inst Appl Beam Sci, Hitachi, Ibaraki 3168511, Japan
[4] Cent Res Inst Elect Power Ind, Komae, Tokyo 2018511, Japan
关键词
D O I
10.1038/nmat1634
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The rechargeable lithium-ion cell is an advanced energy-storage system. However, high cost, safety hazards, and chemical instability prohibit its use in large-scale applications. An alternative cathode material, LiFePO(4), solves these problems, but has a kinetic problem involving strong electron/hole localization(1). One reason for this is believed to be the limited carrier density in the fixed monovalent Fe(3+)PO(4)/LiFe(2+)PO(4) two-phase electrode reaction in Li(x)FePO(4). Here, we provide experimental evidence that LixFePO4, at room temperature, can be described as a mixture of the Fe(3+)/Fe(2+) mixed-valent intermediate Li(alpha)FePO(4) and Li(1-beta)FePO(4) phases. Using powder neutron diffraction, the site occupancy numbers for lithium in each phase were refined to be alpha = 0.05 and 1-beta = 0.89. The corresponding solid solution ranges outside themiscibility gap (0 < x < alpha, 1-beta < x < 1) were detected by the anomaly in the configurational entropy, and also by the deviation of the open-circuit voltage from the constant equilibrium potential. These findings encourage further improvement of this important class of compounds at ambient temperatures.
引用
收藏
页码:357 / 360
页数:4
相关论文
共 21 条
[1]   Lithium extraction/insertion in LiFePO4:: an X-ray diffraction and Mossbauer spectroscopy study [J].
Andersson, AS ;
Kalska, B ;
Häggström, L ;
Thomas, JO .
SOLID STATE IONICS, 2000, 130 (1-2) :41-52
[2]   Electronically conductive phospho-olivines as lithium storage electrodes [J].
Chung, SY ;
Bloking, JT ;
Chiang, YM .
NATURE MATERIALS, 2002, 1 (02) :123-128
[3]   ENTROPY OF THE INTERCALATION COMPOUND LIXMO6SE8 FROM CALORIMETRY OF ELECTROCHEMICAL-CELLS [J].
DAHN, JR ;
MCKINNON, WR ;
MURRAY, JJ ;
HAERING, RR ;
MCMILLAN, RS ;
RIVERSBOWERMAN, AH .
PHYSICAL REVIEW B, 1985, 32 (05) :3316-3318
[4]   PHASE-DIAGRAM OF LIXMO6SE8 FOR 0 LESS-THAN X LESS-THAN 1 FROM INSITU X-RAY STUDIES [J].
DAHN, JR ;
MCKINNON, WR .
PHYSICAL REVIEW B, 1985, 32 (05) :3003-3005
[5]   The existence of a temperature-driven solid solution in LixFePO4 for 0 ≤ x ≤ 1 [J].
Delacourt, C ;
Poizot, P ;
Tarascon, JM ;
Masquelier, C .
NATURE MATERIALS, 2005, 4 (03) :254-260
[6]   THE NASICON-TYPE TITANIUM PHOSPHATES LITI2(PO4)3, NATI2(PO4)3 AS ELECTRODE MATERIALS [J].
DELMAS, C ;
NADIRI, A ;
SOUBEYROUX, JL .
SOLID STATE IONICS, 1988, 28 :419-423
[7]   Nano-network electronic conduction in iron and nickel olivine phosphates [J].
Herle, PS ;
Ellis, B ;
Coombs, N ;
Nazar, LF .
NATURE MATERIALS, 2004, 3 (03) :147-152
[8]   Electrochemical and calorimetric approach to spinel lithium manganese oxide [J].
Kobayashi, Y ;
Kihira, N ;
Takei, K ;
Miyashiro, H ;
Kumai, K ;
Terada, N ;
Ishikawa, R .
JOURNAL OF POWER SOURCES, 1999, 81 :463-466
[9]   Precise electrochemical calorimetry of LiCoO2/graphite lithium-ion cell -: Understanding thermal behavior and estimation of degradation mechanism [J].
Kobayashi, Y ;
Miyashiro, H ;
Kumai, K ;
Takei, K ;
Iwahori, T ;
Uchida, I .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2002, 149 (08) :A978-A982
[10]   Li conductivity in LixMPO4 (M = Mn, Fe, Co, Ni) olivine materials [J].
Morgan, D ;
Van der Ven, A ;
Ceder, G .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2004, 7 (02) :A30-A32