Large Deviations of the Maximum Eigenvalue for Wishart and Gaussian Random Matrices

被引:102
作者
Majumdar, Satya N. [1 ]
Vergassola, Massimo [2 ]
机构
[1] Univ Paris 11, CNRS, Lab Phys Theor & Modeles Stat, UMR 8626, F-91405 Orsay, France
[2] Inst Pasteur, CNRS, URA 2171, F-75724 Paris, France
关键词
QUANTUM CHAOTIC SCATTERING; DISTRIBUTIONS; POPULATION; ENSEMBLES; SYSTEMS; SAMPLES;
D O I
10.1103/PhysRevLett.102.060601
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present a Coulomb gas method to calculate analytically the probability of rare events where the maximum eigenvalue of a random matrix is much larger than its typical value. The large deviation function that characterizes this probability is computed explicitly for Wishart and Gaussian ensembles. The method is general and applies to other related problems, e.g., the joint large deviation function for large fluctuations of top eigenvalues. Our results are relevant to widely employed data compression techniques, namely, the principal components analysis. Analytical predictions are verified by extensive numerical simulations.
引用
收藏
页数:4
相关论文
共 29 条
[1]   Singular value decomposition for genome-wide expression data processing and modeling [J].
Alter, O ;
Brown, PO ;
Botstein, D .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (18) :10101-10106
[2]  
[Anonymous], 1988, Dev. Atmos. Sci
[3]  
Ben Arous G, 2001, PROBAB THEORY REL, V120, P1
[4]  
Bouchaud J.-P., 2001, THEORY FINANCIAL RIS
[5]   Signal and noise in financial correlation matrices [J].
Burda, Z ;
Jurkiewicz, J .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2004, 344 (1-2) :67-72
[6]  
Cavalli-Sforza L.L., 1994, HIST GEOGRAPHY HUMAN
[7]   Large deviations of extreme eigenvalues of random matrices [J].
Dean, David S. ;
Majumdar, Satya N. .
PHYSICAL REVIEW LETTERS, 2006, 97 (16)
[8]   Extreme value statistics of eigenvalues of Gaussian random matrices [J].
Dean, David S. ;
Majumdar, Satya N. .
PHYSICAL REVIEW E, 2008, 77 (04)
[9]   Matrix models for beta ensembles [J].
Dumitriu, I ;
Edelman, A .
JOURNAL OF MATHEMATICAL PHYSICS, 2002, 43 (11) :5830-5847
[10]  
DYSON FJ, 1962, J MATH PHYS, V3, P140, DOI 10.1063/1.1703773